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Abstract. We explore the derivation of a known paradox which arises
from the assumption ”type in type” in a dependently typed lambda cal-
culus, showing therefore the inconsistency of such a type system. We
present a simple modification to the type rules which restores consis-
tency, and provide an implementation of typing for this adapted depen-
dently typed lambda calculus.
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1 Overview

In ”A Tutorial Implementation of a Dependently Typed Lambda Calculus” (A.
Löh et al., 2010) [6] a basic dependently typed lambda calculus and an imple-
mentation in Haskell of type inference and checking for it are presented. The
type system chosen for this dependently typed lambda calculus, which we shall
call λττ

Π , and which will be taken as the basis of the following discussion, is
a direct extension of the simply typed lambda calculus (STLC), with function
types, τ → τ ′, extended to dependent function types, ∀x.ρ.ρ′, and the distinction
between ordinary terms and type terms being dissolved. From this results the
necessity for a term which is the type of all types, ∗, which in turn of course also
requires a type itself. The perhaps most straightforward choice to be made here
is to consider the type of ∗ to be ∗ itself (”type in type”). Just like in Martin-
Löf’s 1971 ”A Theory of Types” [7] this is in fact the choice that A. Löh et al.
made. However, contrary to Martin-Löf in 1971, they did so in full knowledge
that this results in an inconsistent type system, as was shown by Girard in 1972
[2], to keep the type system and it’s implementation simple.

The inconsistency arising from ∗ : ∗ will be the focus of the first part of this
paper. Though instead of Girard’s original proof, a much simplified construc-
tion due to Hurkens [4] will be discussed, which in the following shall be called
”Hurkens’ paradox”. From this paradox we will arrive at a (relatively) compact
concrete term of type ∀A : ∗.A, which should be impossible in a consistent type
system, given that by applying this term to any possible type we receive a term
of that type, including any definitionally empty types. So, looked at through the
Curry-Howard correspondence, where we take types to represent propositions
and terms to represent proofs, this entails that we can provide a proof for every
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possible proposition, which clearly would make such an implementation of little
use as the basis for a proof assistant.

While there are different ways of resolving the inconsistency arising from
∗ : ∗, in the second part of this paper, one possible solution, namely a ”hierarchy
of sorts” will be introduced, and an extended version of the lambda calculus and
typing implementation presented by A. Löh et al., which we shall call λω

Π, will
be presented.

For a complete and annotated Agda source file implementing Hurkens’ para-
dox, a translation thereof into the abstract syntax of an implementation of λττ

Π

in Haskell, and the implementation of λω
Π, refer to the code repository associated

with this paper [3].

2 Hurkens’ Paradox

In 1995, Antonius J.C. Hurkens derived, based upon work by Girard [2] and
Coquand [1], a relatively compact term of type ⊥ in λU− [4]. While the type
system of λU− goes beyond the type system of λττ

Π , his construction can be
followed one-to-one, giving us a term of type ⊥ in λττ

Π , proving the type system’s
inconsistency, which we shall do in the following.

Though Hurkens showed two different approaches to simplifying Girard’s
paradox, the one for which he provided a complete term of type ⊥ is based upon
the concept of ”powerful universes”, and will be the one explored here.

While the goal in the end will be to construct the paradox in the mentioned
implementation of λττ

Π , for readability and convenience, in the following, the
syntax of the dependently typed programming language Agda [8] will be used in
the explanation of the paradox. Also, each type theoretic definition and proof,
given in Agda syntax, will be accompanied with a directly corresponding set
theoretic elaboration of the proof.

2.1 Basic Definitions

In absence of record types, we will, as is common, define the empty type ⊥ and
negation ¬ as follows:

⊥ : Set
⊥ = (A : Set) → A

¬ : Set → Set
¬ P = P → ⊥

A term of type ⊥ would have to be a function that could produce a term for
any possible type, i.e. a proof of every possible proposition. Therefore this type
has to be empty for the type system to be consistent.

A term of type ¬P for some proposition P is simply a function which, if a
proof of P were given, would produce a term of type ⊥. Therefore, if we can
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construct a term of type ¬P , then it follows that we can not possibly produce a
term of type P . At least that is the case in a consistent type system. Therefore
the proposition P must not be true.

This gives us the first hint as to how we could derive a term of type ⊥. If
we can come up with some proposition P for which we can both derive a term
of type P and of type ¬P , then we simply have to apply ¬P to P and we will
have our term of type ⊥ in hand. In fact, this will be exactly what we shall do
in the end, however, first we have to come up with such a proposition.

For ease of readability and conceptual understanding, we shall also define a
function for the type of all propositions over some type A. From a set-theoretic
perspective, this is to be understood as the set of all subsets for some set A, i.e.
it’s power set:

℘ : Set → Set
℘ A = A → Set

This powerset function will be made extensive use of in the following to allow
us to build up our paradox.

2.2 A Powerful Universe

The first significant definition for Hurkens’ Paradox is an instance of a power-
ful universe, which we shall consider essentially plucked out of thin air, in the
knowledge that it will allow us to derive our contradiction:

U : Set
U = (A : Set) → (℘ (℘ A) → A) → ℘ (℘ A)

τ : ℘ (℘ U) → U
τ ppU A ppA→A pA = ppU (λ u → pA (ppA→A (u A ppA→A)))

σ : U → ℘ (℘ U)
σ u = u U τ

This triple of (U, σ, τ ) we consider to be powerful, since it satsifies, in set
theoretic terms, the following property:

∀C ∈ ℘(℘U) : σ(τC) = {X| {y|τ(σy) ∈ X} ∈ C}

We will not concern ourselves with translating this property into type theory
or proving that this property holds for our (U, σ, τ ) (see Hurkens’ original deriva-
tion [4] for some elaboration on the definition of a powerful universe), since such
a proof term will not be necessary in constructing our paradox. Rather we will
implicitly use this property as it arises from the behaviour of τ and σ as defined
above.
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2.3 Inductive Subsets and Well Founded Elements

For subsets of U we define the following proposition:

inductive' : ℘ (℘ U)
inductive' pU = ((u : U) → σ u pU → pU u)

In set theoretic terms this means that for some subset pU of U , we consider
pU to be inductive iff the following property holds:

∀u ∈ U : (pU ∈ σu ⇒ u ∈ pU)

Using this property over subsets of U , we define a proposition over elements
of U :

well-founded : ℘ U
well-founded u = (pU : ℘ U) → inductive' pU → pU u

In set theoretic terms this means that we consider some element u of U to
be well founded iff it is in every inductive subset of U .

2.4 A Paradoxical Element

With τ from our definition of U as a powerful universe, we pick out a specific
element in U for which we can show that it simultaneously is well founded and
isn’t well founded, which will give us the contradiction we seek:

Ω : U
Ω = τ inductive'

This means that in set theoretic terms, we consider Ω to be:

τ ({pU ∈ ℘U |pU is inductive})

2.5 The Paradoxical Element is well founded

The proof that Ω is well founded is relatively straightforward:

well-founded-Ω : well-founded Ω
well-founded-Ω pU ind-pU = ind-pU Ω (λ u → ind-pU (τ (σ u)))

In set theoretic terms, we need to show that for any inductive subset pU of
U , Ω is in pU . Knowing that pU is inductive, this means that we need to show
that pU is in σΩ.

Since U is powerful, σΩ = {pU ∈ ℘U | {u ∈ U |τ(σu) ∈ pU} is inductive}. So
to show that our pU is in σΩ, we need to show that {u ∈ U |τ(σu) ∈ pU} is
inductive.

Since pU is inductive, we known that for any u ∈ U , if pU is in σ(τ(σu)),
then τ(σu) is in pU . But this already is exactly what we need to show to prove
that {u ∈ U |τ(σu) ∈ pU} is inductive, therefore our proof is complete.
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2.6 But also not well founded

To construct the proof that Ω is at the same time not well founded, we define
one more concept:

_<_ : U → U → Set
v < u = (pU : ℘ U) → σ u pU → pU v

For some u ∈ U , we consider some v ∈ U to be a predecessor of u iff for every
subset pU of U , pU being in σu implies that v is in pU .

With this concept, we define ourselves one specific subset of U , which will
turn out to be inductive:

Δ : ℘ U
Δ u = ¬ (τ (σ u) < u)

So in set theoretic terms, ∆ := {u ∈ U |τ(σu) ≮ u}.
We prove that ∆ is inductive:

inductive-Δ : inductive' Δ
inductive-Δ u σuΔ τσu<u =

τσu<u Δ σuΔ (λ pU → τσu<u λ w → pU (τ (σ w)))

To show that ∆ is inductive, we need to show that for any u ∈ U , if ∆ is in
σu then u is in ∆, so τ(σu) ≮ u.

So for any u ∈ U with ∆ ∈ σu, we assume τ(σu) < u and arrive at a
contradiction from this assumption as follows:

τ(σu) < u means that for any pU in σu, τ(σu) is in pU . If we take for pU ∆
itself, this means that τ(σu) is in ∆, so τ(σ(τ(σu))) ≮ τ(σu).

On the other hand we can show that τ(σ(τ(σu))) < τ(σu) as follows:
For any subset pU of U we have to show that if pU is in σ(τ(σu)), then

τ(σ(τ(σu))) is in pU . However, since U is powerful, this simplifies to having to
show that if {w|τ(σw) ∈ pU} is in σu, then τ(σu) is in {w|τ(σw) ∈ pU}. But
that follows directly from our initial assumption that τ(σu) < u. Therefore our
proof is complete.

With ∆ and the knowledge that it is inductive in hand, we can at last prove
that Ω is not well founded, which will complete the contradiction we seek:

¬well-founded-Ω : ¬ (well-founded Ω)
¬well-founded-Ω wfΩ =

wfΩ Δ inductive-Δ (λ pU → wfΩ (λ w → pU (τ (σ w))))

To show that Ω is not well founded, we assume that it is, and will from this
derive a contradiction:

Since ∆ is inductive and Ω well founded, this means that Ω is in ∆, and
therefore τ(σΩ) ≮ Ω. On the other hand, we can show that τ(σΩ) < Ω as
follows:
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For any subset pU of U we have to show that if pU is in σΩ, then τ(σΩ) is in
pU . However, since U is powerful and Ω was defined as τ {pU |pU is inductive},
this simplifies to having to show that if {w|τ(σw) ∈ pU} is inductive, then Ω is
in {w|τ(σw) ∈ pU}. But that follows directly from our initial assumption that
Ω is well founded. Therefore our proof is complete.

2.7 A term of the empty type

With both a proof that Ω is well founded and a proof that Ω is not well founded
in hand, we can at last construct the term of type ⊥:

false : ⊥
false = ¬well-founded-Ω well-founded-Ω

This concludes the proof that λττ
Π is inconsistent.

3 A Hierarchy of Sorts

As evident from the construction of a contradiction in λττ
Π presented above, it

is necessary for the expressiveness of our dependently typed lambda calculus to
be weakened in some way for it to be consistent. However, we simultaneously do
not want to give up the ability to express propositions of practical interest and
their proofs in our lambda calculus.

Luckily, a rather simple modification to the type system of λττ
Π is sufficient

to make it consistent again [5] [1], replacing the problematic type rule ∗ : ∗ by a
hierarchy of sorts:

∗ : ∗1
∗1 : ∗2
∗2 : ∗3
∗3 : ∗4
...

So just like in λττ
Π every object term, like true, has some type, like Bool, and

every type term has the kind ∗. However, the term ∗ itself does not have the
kind ∗, but the sort ∗1, the term ∗1 has the sort ∗2, the term ∗2 has the sort ∗3
and so on.

In the following, we will write for consistency of notation ∗0 for the sort of
types, istead of ∗.

This lambda calculus we shall call λω
Π. The grammar and type rules for it are

as follows:
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e, ρ ::= e : ρ

| x

| e e′

| λx.e

| ∗ℓ
| ∀x.ρ.ρ′

Γ ` e :↑ τ

Γ ` e :↓ τ

Γ(x) = τ

Γ ` x :↑ τ

Γ, x : τ ` e :↓ τ ′

Γ ` λx.e :↓ ∀x.τ.τ ′

Γ ` e :↑ ∀x.τ.τ ′ Γ ` e′ :↓ τ

Γ ` e e′ :↑ τ ′[x 7→ e′ ]

Γ ` ρ :↑ ∗ℓ ρ ⇓ τ Γ ` e :↑ τ

Γ ` ( e : ρ ) :↑ τ

Γ ` ρ :↑ ∗ℓ ρ ⇓ τ Γ, x : τ ` ρ′ :↑ ∗ℓ′

Γ ` ∀x.ρ.ρ′ :↑ ∗max(ℓ,ℓ′) Γ ` ∗ℓ :↑ ∗ℓ+1

Only the last three rules differ from λττ
Π , and only the last two do so substan-

tially. Also of note is that some type judgements have turned from type checking
to type inference due to the need to know the level ℓ for a sort ∗ℓ, which will in
turn necessitate corresponding adaptations in the implementation.

The last type rule, ∗ℓ : ∗ℓ+1, is a direct implementation of the hierarchy of
sorts as explained above.

But of course it is also necessary to reconsider type judgements over terms
∀x.ρ.ρ′ in the second to last type rule.

One option in defining the type rule for ∀x.ρ.ρ′ would be to simply directly
keep the rule from λττ

Π in our new type system:

Γ ` ρ :↓ ∗0 ρ ⇓ τ Γ, x : τ ` ρ′ :↓ ∗0
Γ ` ∀x.ρ.ρ′ :↑ ∗0

While this would be consistent (since it is simply a strictly less powerful
type system than that of λω

Π), and would have the advantage of that we would
only have to check that the kind of ρ and ρ′ is ∗0, it would greatly restrict the
expressiveness of our language, since it would mean that a function could not
even take a type as an argument or return a type as it’s result, it could only go
from objects to objects.

Instead, we will allow for functions to go from any sort to any sort, from
objects to types, from types to objects, from kinds to objects, from objects to
kinds, etc. :
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Γ ` ρ :↑ ∗ℓ ρ ⇓ τ Γ, x : τ ` ρ′ :↑ ∗ℓ′
Γ ` ∀x.ρ.ρ′ :↑ ∗max(ℓ,ℓ′)

So the sort of some term ∀x.ρ.ρ′ is simply the higher of the sorts of ρ and ρ′.
Taking ρ → ρ′ as a shorthand for ∀x : ρ.ρ′ with x not appearing in ρ′, this

means for example that a term ∗7 → ∗3 is of the sort ∗8, since ∗7 : ∗8 and ∗3 : ∗4.
As a more practical example, the ”power set” function ℘ we defined above

for our construction of Hurkens’ paradox, ℘A := A → ∗0, would have the sort
∗0 → ∗1.

This already hints towards how the construction of Hurkens’ paradox pre-
sented above might no longer work in λω

Π, given that it heavily relies on the fact
that in λττ

Π , ℘ : ∗ → ∗.
The definition of the function ℘ above might also raise the question what to

do if we do not want to look at the type of all propositions over some type, but
rather over some kind, or over some higher sort. Do we define ℘1A := A → ∗0
of sort ∗1 → ∗2, ℘2A := A → ∗0 of sort ∗2 → ∗3, and so on?

In the type system presented here, we do not have any other choice but
to do so. However, there are possible extensions to alleviate this redundancy
of definitions, namely universe polymorphism [9]. However, not only does this
require levels to become terms inside the lambda calculus itself, but also brings
with it the need to introduce a second hierarchy of sorts for level polymorphic
function types. We will not implement this here.

4 Implementation

With the introduction of a hierarchy of sorts having necessitated that some
judgements in our type rules have turned from type checking to type inference,
the implementation of λττ

Π has to be changed in quite a few places. Though most
of these changes are not terribly significant, so we will focus here on the changes
to the implementation due to the new type rules for e : ρ , ∀x.ρ.ρ′, and ∗ℓ.

4.1 Abstract Syntax

data TermInfer
= Ann TermCheck TermInfer
| Star Int
| Pi TermInfer TermInfer
| Bound Int
| Free Name
| TermInfer :@: TermCheck
deriving (Show, Eq)

Star now no longer simply is a constant constructor, but has an argument,
it’s level. And both Ann and Pi now have in places a TermCheck replaced with
TermInfer due to the necessary changes to the type rules.
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4.2 typeInfer for Ann

typeInfer i g (Ann e r) =
do
s <- typeInfer i g r
case s of

(VStar l) -> do
let t = evalInfer [] r
typeCheck i g e t
return t

_ -> failure ":("

We infer the type of r, which has to be some VStar l or we fail. Otherwise
we proceed as in the implementation of λττ

Π , evaluating r to t and checking e
against t.

4.3 typeInfer for Pi

typeInfer i g (Pi r r') =
do
s <- typeInfer i g r
case s of

(VStar l) -> do
let t = evalInfer [] r
s' <-

typeInfer
(i + 1)
((Local i, t) : g)
(substInfer 0 (Free (Local i)) r')

case s' of
(VStar l') -> return (VStar (max l l'))
_ -> failure ":("

_ -> failure ":("

We infer the type for r, which has to be some VStar l or we fail. Otherwise,
we evaluate r to t and infer the type of r' in the extended context, which again
has to be some VStar l'. With both the sort level l of r and l' of r' determined,
we can return the sort of our Pi term, VStar (max l l').

And that is all.
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