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Abstract

This research provides a method for extracting information from academic
text from the databases domain, using a verb as a query. The amount of lat-
ent information in documents in non-structured format or natural language
texts is known to be very large, and this is motivation for the development
of methods that are able to bring this information into a structured format
that can be computationally useful. Most of the academic output is provided
in different formats, mostly PDF (Portable Document Format), and con-
tain a very large amount of information and comparison across methods and
techniques. We chose to use language models to extract language informa-
tion, such as part-of-speech tags or dependency trees, and use sets of rules
to output a relation in the Relation(Arg;, Args, Arg,) format. Our results
correctness, for the types of relation we propose to extract, are comparable
to other existing tools.
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Chapter 1

Introduction

Information extraction (IE) is the process of obtaining in an automatic fash-
ion facts and information from unstructured text that can be read by a ma-
chine [26].

Historically, it mostly started with exercises on template filling based
on raw natural text [34] as part of the Message Understanding Conferences
(MUC) from the late 1980s and 1990s. As part of the MUC, competitions
would take place in which a corpus would be made available of a specific do-
main, and different teams with different programs would try to extract the
information from the natural text as to fill in the intended templates.

Note the following text from a news report regarding the result of a
soccer match:

‘Though Brazilian star Diego Tardelli’s equaliser denied the Sky
Blues victory at Jinan Olympic Sports Centre Stadium on Wed-
nesday night, David Carney banked a precious away goal that will
bode well for Graham Arnold’s side when they host Shandong in
next week’s second round-of-16 leg. Sydney FC have taken a size-
able step towards a maiden Asian Champions League quarter-
final berth after securing a 1-1 draw with Shandong Luneng in
China.’

Team 1:

Team 2:

Winner: _________

Location:
Final Score:

Figure 1.1: An example of template to be filled in the sports domain.

An example of a task would be, to solely based on the above raw text,
to fill in the template shown in Figure 1.1. The MUC competition would be
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2 CHAPTER 1. INTRODUCTION

based in various corpus and tasks based on varieties of news reports, such as
satellite launches, plane crashes, joint ventures and other different data in
these specific domains.

On the above example, one can observe that the Team 1 is Sydney FC,
Team 2 is Shandong Luneng, there was no Winner, and consequently the
Location and the Final Score. It gets more interesting as you observe the
same type of information being delivered by a different reported:

‘SYDNEY FC take the advantage of an away goal in China, leav-
ing the second leg of their Asian Champions League Round of 16
tie with a 1-1 draw with Shandong Luneng.’

Although roughly similar in this case, the approach to retrieve the data
from Natural Language text needs to be able to generalise to the various
ways a reporter might write such information. This effort becomes more
complex as one moves through different domains and audiences of a text,
such as: technical manuals, academic papers from different areas, legal text,
contracts, financial news, biomedical, among others.

More recently, the output of such Information Extraction systems are
used as to build other systems, more prominently Knowledge Graphs. A
Knowledge Graph (KG), also known as the knowledge base, is a collection of
the machine-readable database that contains entities, the attributes of entit-
ies and the relationships between entities [20]. Information Extraction tools
would harvest data from unstructured or semi-structured text and provide
such databases.

Popular search engines such as Google [20] and Bing [6] leverage Know-
ledge Graphs as to provide entity summary information and the related
entities based on the query that the user is searching for. It is an essential
foundation for many applications that requires machine understanding.

The use of Knowledge Graphs then allow users to be able to see ex-
tra information in a summarised table-like form, as to resolve their query
without having to navigate to other sites. Note in the example in Figure 1.2
how the right column represents a sequence of facts of the ‘Jimi Hendriz’
entity, in this case an entity of the class (or type) PERSON, such as: his of-
ficial website; where and when he was born; where and when he died; and a
list of movies where this person is the subject of.

Modern pipelines for building Knowledge Graphs from raw text would
then encompass several Information Extraction techniques, such as the ones
below:

1. Discover entities in the text;
2. Discover relationships between these entities;

3. Perform entity disambiguation;
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Figure 1.2: An example of knowledge graph application in the Google’s
result page.

4. Link entities to a reference Knowledge Graph (e.g., Yago2 [44]| or DB-
Pedia [27]);

5. Improve the quality of the output via input data cleaning, robust ex-
traction, and learning-based post-processing methods;

6. Reason about how accurate these facts are;
7. Finally presenting the facts in a graph (the Knowledge Graph).

Some of these techniques will be explained further as part of this docu-
ment.

In this project, we focus on studying and presenting some Information
Extraction techniques as to build a domain-specific verb-centric information
extraction tool that extracts relations from academic papers. More specific-
ally, we focus on papers from the topic of databases and attempt to extract
information from these papers for posterior usage by other systems with ap-
plications such as:

e Allow for structured and fast search of techniques in the papers and
the possible relations between them:;

e Possibly group papers by their used techniques;

e Discovery of techniques to improve performance on a certain problem;
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e Generate a hierarchy of concepts, and their use;
e Among others.

An existing service that organises data from academic papers is the Se-
mantic Scholar [40] project, by Professor Oren Etzioni from Allen Institute
for AIl. However, Semantic Scholar only understands a limited number of re-
lationships (such as ’cite’, 'comment’, 'use data_set’, and ’has_caption’)
which are also more closely related to the meta-data about the paper, but
not from the knowledge that the paper itself presents. Other similar services
are Microsoft Academic Graph [32], Google Scholar [21], and CiteSeerX [11].

In the next sections, this document will give some background inform-
ation on the techniques needed to achieve the above (Chapter 2), and it will
also define the problem more precisely (Chapter 3), building as to introduce
the development of this research (Chapter 4). In Chapter 5 we will describe
some of the results, followed by the some final remarks in Chapter 6.



Chapter 2

Information Extraction

Information Extraction, a term already defined in the introduction, is a hard
problem which mostly relies in attempting to use a computer to understand
information explicitly stated in the form of natural language.

It is interesting to observe that, before writing down thoughts in a pa-
per, an academic form the ideas of what facts he/she wants to express in
his/hers head, and then attempt a structure to most clearly state these in
text form. These multiple facts, and the relations between them, are then
stated in a sentence in what is assumed to be a somewhat logical format, fol-
lowing the semantics of the language, whether English or any other. Follow-
ing this example, one must then also assume that the future reader of this
paper will use the reverse process to decode this information into facts or
ideas to be understood. In fact, this assumption is what justifies the attempt
of Information Extraction.

Several initiatives in the Natural Language Processing area attempt to
understand and map what these semantic rules are, and how one could use
a computer for tackling natural language related tasks. These initiatives are
fruitful and provide advanced tools and techniques in which some will be
described in this chapter.

2.1 Natural Language Processing

Natural Language Processing (or NLP) can be a term used to discuss any
kind of computer manipulation of natural language text, also called raw
text. It can mean simple things such as counting words and obtain their fre-
quency distribution to compare different writing styles, or in a more complex
sense it would require the understanding of human writings, to the extent of
being able to extract information and meaning from it, or also give useful re-
sponses to them [7]. On this more complex end of the spectrum, where one
wants to understand raw text, language technology and existing tools rely on
formal models, or representations, of knowledge of language at the levels of
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morphology, syntax, semantics, among others linguistic concepts. A number
of formal models including state machines, formal rule systems, logic, and
probabilistic models are used to capture this knowledge from text and reason
with it [26].

When information is laid out in natural language form, one start the
analysis of the information presented by constructing a phrase or sentence
based on smaller pieces of information such as verbs, nouns, and adjectives
which are called the constituents. These then build up to form sequences of
simple and complex sentences.

Observing more carefully a simple sentence, such as ‘The police chased
him.’, it is possible to attempt to sample the different syntactic information
presented in it As a first step it is possible to dissect its constituent parts as
per Figure 2.1.

The/DT police/NN chased/VBD him/PRP ./.

Figure 2.1: An example of tagged sentence.

The first word in the sentence, The, is a DT or determiner. Other pos-
sible determiners include ‘my’, ‘your’, ‘his’, ‘her’. The second word is ‘police’
is a NN which is the tag for a singular noun. With this information we can
already tell that this sentence is speaking about something, and this some-
thing is the noun ‘police’. Subsequently the tag VBD is presented which spe-
cifically indicates the word ‘chased’ is a verb (an action) in the past tense.
At this point one can observe that something or someone (in this case the
‘police’) did something in the past.

This is already great information to have about the sentence. These
tags that were added to the text in Figure 2.1 are called Part-Of-Speech
tags, or POS tags [26]. The standardization of these tags and work to de-
velop and tag existing text with them is done by the Penn Treebank project
[30].

Note how specific the tags are, dictating the type of the word, a verb
for an example, and its variation either in quantity or tense. Some other
examples of these tags are shown in Table 2.1. Although most of them are
simple to understand, note that ADP are the adpositions, which encom-
passes prepositions and postpositions. Some systems, such as the spaCy
Natural Language Processing parser [24, 42| also maps these more specific
tags into more general ones, for an example, while three different words in
a sentence are tagged independently as VBD, VBG and VBZ, they are also
tagged with a VERB tag. This is useful, if the user is not too interested in
the detail of which verb variation was used.

A Part-Of-Speech Tagger is then a system that, given a raw text as in-
put, assigns parts of speech to each word (or token) and is able to produce
as output the tagged version of this text. The text in Figure 2.1 was tagged
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POS tag Meaning Sample
ADP Adpositions at, or in
CONJ Coordinating conjunction and, or or
DT Determiner The
JJ Adjective She is tired
JJIR Adjective, comparative That one is larger
JJS Adjective, superlative That is the largest
NN Noun, singular or mass Car
NNS Noun, plural Cars
NNP Proper noun, singular Microsoft
NNPS Proper noun, plural The Kennedys
RB Adverb She said firmly
VB Verb, base form Attack
VBD Verb, past tense Attacked
VBG Verb, gerund or present participle Attacking
VBN Verb, past participle Broken
VBP Verb, non-3rd person singular present [ attack
VBZ Verb, 3rd person singular present He attacks

Table 2.1: List of some of the possible Part-Of-Speech (POS) tags.

using the Stanford Log-linear Part-Of-Speech Tagger [47].

POS Tag Word Prev. Word Prev. Tag
DT The <START> <START>
NN police  The DT
VBD chased police NN
PRP him chased VBD

him PRP

Table 2.2: Features for sequential POS tagging.

The task of assigning these tags starts by deciding what are the tokens
in a raw text sentence, and what are its sentences. As an example, the token-
izer needs to decide if a period symbol near a word represents an abbrevi-
ation (e.g. Dr.) or a sentence boundary - in case of an abbreviation, this
period is then considered simply a token within the sentence. Another com-
mon problem in this step is deciding if a single quote is part of a word,(e.g.
‘It’s’), or is delimiting a quoted part of the sentence, thus potentially hinting
other semantic meanings. The Stanford POS Tagger used in this example
also contain a tokenizer, which is part of the Stanford CoreNLP [29], a set of
natural language analysis tools.

Modern POS Taggers tackle this task using a technique called Sequence
Classification. A machine learning classifier model is then trained with a cor-
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pus of manually tagged text and has as an input certain features that might
indicate which tag a token being currently analysed should be assigned with.
Observing again the example from Figure 2.1, but now presented in table
format in Table 2.2, it is easier to see how this learning algorithm would be
trained to predict tags on unseen test. Note the second word ‘police’. For
this word we are providing 4 features for the learning algorithm: the manu-
ally labelled POS Tag, the word itself, the previous word and the previous
POS Tag. Suppose now that this sentence is included in a bigger corpus, and
this pattern is a common one and the learning algorithm is provided with a
substantial amount of labelled data in which this situation repeats itself: a
NN is the second word in a sentence, with ‘The” and DT being the previous
word and tag respectively.

After the training, this model would behave in a similar fashion once
presented with unseen data. Suppose now the first column on Table 2.2 is
not presented. The model would pick the first word ‘The’ and observe the
features: <START> and <START> respectively and given that in our pre-
viously described corpus this is a common occurrence, it would then label
this word with DT. Now, for the second word ‘police’, the features would be
‘The’ for previous word, and DT for previous tag. Again, it is common for
a noun to be placed after a determiner so the model assigns the label NN to
the word ‘police’. The features used by the Sequence Classifies both while
training and when using the model may vary and they impact the quality
of the predictions it makes. The Stanford POS Tagger uses a broad use of
lexical features, including jointly conditioning on multiple consecutive words
[47].

A helpful concept at this stage is known as the lemma. A lemma is a
canonical way of representing a word which strips out variations for quant-
ity, tense, among others [26]. For an example, given the words ‘running’ or
‘runs’, NLTK [7] outputs run as their lemma. The lemma can, for an ex-
ample, be used together or instead of the existing features for training mod-
els.

Jetstar/NNP Airways/NNPS ,/PUNC a/DET unit/NN of/ADP Qantas/NNP
Airways/NNP Limited/NNP

Figure 2.2: An example of another tagged sentence.

When reading a text, it is also important to understand the relation
between the words or sub-sentences that are contained in the phrase, and
this is specially useful for information extraction. As an example, suppose
the sentence ‘Jetstar Airways, a unit of Qantas Airways Limited’. There are
different ways of breaking down the relationship of the words in this sen-
tence.

Starting again with the POS tagging discussed earlier, one can see in
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Figure 2.2 what are the types of the words that constitutes this sentence.

As a further step, it’s possible to see what are the sub-sentences or parts
that form the phrase structure, also called constituency parsing. The sub-
sentences are connected upwards to one head (also called, parent), and down-
wards to one or more governors (also called dependants, or children), in a
recursive structure. In Figure 2.3, the phrase ‘of Qantas Airways Limited’,
which is part of the bigger phrase we are using as an example, is a prepos-
itional phrase. A prepositional phrase lacks either a verb or a subject, and
serve to assert binary relations between their heads and the constituents

to which they are attached, in this case ‘a unit’ [26]. The sub-sentence ‘a
unit of Qantas Airways Limited’ is then a noun phrase, since it contains and
talks about a noun ‘unit’.

NP
) T
NP PUNC NP
/\
NmPS X NP PP
/\
Jetstar  Airways DT/\NN IN NP

I R

a unit of NNP NNP NNP

Qantas Airways Limited

Figure 2.3: A sentence broken down to its Phrase Structure (sub-
sentences), also known as constituency parsing.

After discovering the structure between the phrases and its sub-phrases,
finding the syntactical dependency between words themselves is also a very
interesting and useful task. Continuing on the same example, one can see
how the sentence states the simple fact that one company (Jetstar) is a unit
of another company (Qantas). The Dependency Tree in this case tells us
that Jetstar/NN is the head of another noun Airways and that the relation
between them is of the compound type. This relation is held between any
noun that serves to modify the head noun and in this case indicate that this
single entity is formed by two different words that are nouns. Note that Jet-
star has no parents and thus is the root of the sentence. The dependencies
can be fully viewed is Figure 2.4.

The next relation is the appos from ‘Airways’ to ‘unit’. The apposi-
tional modifier relation indicates that the noun immediately to the right of
the first noun that serves to define or modify the meaning of the former.
One now already knows that ‘Jetstar Airways’ is a ‘unit’, and, in the busi-
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ness context, it probably means that it is a company that belongs to a big-
ger company.

ROOT

pobj

compound
appos

compound compoun
det prep

T
Jetstar  Airways , a unit of Qantas Airways Limited

Figure 2.4: A sentence and the dependencies between the words.

Continuing the analysis, the next relation is of the prep type and it in-
dicates a prepositional modifier of a verb, adjective, or noun (our case), and
it serves to modify the meaning of the verb, adjective, noun, or even another
preposition. Note that this relation simply indicates the word pointed to by
the edge is the preposition (in this case ‘of’). The next relation, pobj, in-
dicates the actual object of the preposition and the noun phrase following
the preposition and what it related to. This tree was created by the spaCy
dependency parser [24, 42]. This same tree can be visualised in a more tra-
ditional tree structure in Figure 2.5. Although not in this example, another
very common relation is the relative clause modifier recmod (or relcl in some
notations) relation. A relative clause modifier of an NP (Noun Phrase) is a
relative clause modifying the NP. The relation then in the tree points from
the head noun of the NP to the head of the relative clause, normally a verb.
The explanations for the cited relations in this document were obtained from
the Stanford typed dependencies manual [31], and the Universal Dependen-
cies (UD) project [37], both which are reference for the possible relation and
contain a full lists of their meanings.

The software that is able to output a syntactical dependency tree, given
a sentence, is called a dependency parser. Several different methods can be
used to achieve this. One way is by defining dependency grammars, and
then parsing text using these grammars. The grammar would contain words
and its possible heads, and it would be applied repeatedly into the text in
a process called cascaded chunking [7]. More recent methods use a process
called Shift-reduce, in which the sentence is kept in a queue with the left-
most token in front of the queue. The model could then decide between ap-
plying 3 operations:

1. Shift: move one token from the queue to stack.
2. Reduce left: top word on stack is head of second word.

3. Reduce right: second word on stack is head of top word.
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Jetstar

compound

Airways

appos

Figure 2.5: A sentence and the dependency tree, showing the syntactical
relation between these words.

A model is then trained to predict, given a text that is added to the
queue, what is the next move that it should take, and what is the sequence
of moves that will result in the best possible final dependency tree. This is
done in a monotonic manner, in the sense that once a decision is made by
the model, it cannot change it. Full working examples of this method are de-
scribed in [10]. Other methods also use these 3 possible decisions, but allow
the parser to be non-monotonic and go back in the tree and change previ-
ous decisions given new evidence form the features, such as spaCy and its
dependency parser |24, 42]. Another method also uses the same set of de-
cisions, but does a beam-search observing multiple partial hypotheses and
keeping them at each step, with hypotheses only being discarded when there
are several other higher-ranked hypotheses under consideration, such as the
Syntaxnet parser [46, 3]. All these cited models use neural networks as the
method to form the model.

As a further example, besides providing dependency parsing tree, spaCy
also provides an iterator so you can obtain what is called the noun chunks of
the document. The noun chunks are smaller pieces of the sentences within
the document that are base noun phrases, or a 'NP chunk’ (as per Figure
2.3). They are noun phrases that do not permit other NPs to be nested
within it so no NP-level coordination (e.g.: ‘cat/NN and/CONJ dog/NN’),
no prepositional phrases, and no relative clauses [42].

Other problems tackled by the Natural Language Processing discipline
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and that are relevant for Information Extraction are Coreference resolution
and pronominal anaphora resolution. Coreference resolution intends to define
all possible entities that a text can reference to in some sort of definitive list,
or more precisely a discourse model, find in the text all the chained refer-
ences to these entities, and link them to the specific entities. While very
similar in nature, pronominal anaphora resolution is more simple as it is

the problem of resolving in a given sentence to which previous NN (noun)

or NNP (proper noun) a single PRP (pronoun) refers to [26].

Take for an example the sentence ‘John is a quiet guy, but today he is
furious.’, the initial mention of the entity John appears in the first token.
Token five talks about a guy, which although not a pronoun, is still a refer-
ence to the previous entity in the first word. The ninth token is a pronoun
and again refers to the same John, so is part of the chain of mentions. The
full resolution chain would be denoted in Figure 2.6.

Normally these systems work towards analysing pairs of tokens using
a probabilistic model, and then decide how likely they are references for the
same entity. More recent approaches also group possible tokens in a cluster
and use cluster-level features to determine the chains of coreferences [12].
The tool used to extract Figure 2.6 is the Stanford Coreference Resolution
annotator [12], which is part of the latter group of tools that use cluster level
features. This annotator is also part of the CoreNLP toolset [29].

mention

coref coref

N

John is a quiet guy , but today he is furious

Figure 2.6: A sentence, the mentions of an entity, and the proposed core-
ference resolutions.

All linguistic data mentioned in this section is data that can be ob-
tained from the raw text itself, and is then the base for several features in
which methods for Information Extraction act on.

2.2 Information Extraction

The IE (Information Extraction) process is described by the following sub-
tasks: Named Entity Recognition (NER), Coreference Resolution, Entity
Disambiguation, Relation Extraction (RE), Event Detection, and Temporal
Analysis [26]. The main subtasks relevant to this report will be described
further in this section.
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Once the information is extracted it is then used for tasks such as Tem-
plate Filling [26], Question and Answering systems [34], or stored as a Know-
ledge Graph for downstream logical reasoning or for further queries.

[pEr James Cook| was born on 27 October 1728 in the village of [,oc Mar-
ton| in [counTy Yorkshire|.

Table 2.3: An example of Named Entity Recognition (NER).

Named Entity Recognition (NER) is the process of, given a sentence,
identify and extract what are the entities that are part of it. Once the entity
is detected, it needs to be classified within the classes of the given domain -
in the spirit of the previous examples this would be e.g.: CITY or PERSON.
Different types of entities are relevant to context of the data being worked
with. A few approaches exist for the problem of NER, mostly related to Pat-
tern Matching or Sequence Classification.

Pattern Would yield ENTITY of type
[PERSON]| was born ~ PERSON

in the village of [LOC|] LOCATION

in [LOC] LOCATION

Table 2.4: Examples of Named Entity Recognition (NER) patterns, based
on the sentence from Table 2.3.

Observe, for an example, the sentence in Table 2.3. Several articles re-
garding prominent figures, either historical or of our current society, can
be of the format ‘Jimi Hendriz was born’. One approach might be Pattern
Matching, which is to mine the input natural language text while looking for
the pattern ‘({ENTITY] was born’, using Regular Expressions (Finite-State
Automata) [26]. The entities found by this pattern would then also receive
the PERSON class. This pattern would miss the sentence ‘Jimi Hendriz,
born in Seattle’ since it does not fit the pattern and, because of this, one
generally needs to build a list or database of patterns to work with in a cor-
pus. An example of such database was generated by the PATTY system [36].
Table 2.4 depicts other possible similar patterns.

Another way to extract entities from text is to frame the NER prob-
lem as a Sequence Classification problem, similar to the POS tagging prob-
lem described earlier. It requires the training of a classifier in which, given
the class of the previous word, and other surrounding features of the current
word, will attempt to guess if the current word is an entity, and if it is, also
guesses its class.

To achieve this, previously annotated data with existing sentences and
its entities is needed. This can be obtained by manually labelling data, or
by semi-automated methods, like the one proposed later by this document.
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The format in which this annotated data is provided varies, however the
IOB format (Table 2.5) is more commonly used in several of the NER tools,
including NLTK [7| and the popular Stanford Named Entity Recognizer

(NER) [19], part of the Stanford CoreNLP [29]. Stanford CoreNLP provides
a set of natural language analysis and information extraction tools.

Word Tag
James B-PERSON

Cook I-PERSON

was @)

born 0]

on @)

27 B-DATE

October  I-DATE

1728 I-DATE

in O

the 0]

village O

of O

Marton B-LOC

in @)

Yorkshire B-LOC
O

Table 2.5: Example of IOB-formatted sentence used to train classifiers
for the Named Entity Recognition (NER) task, based on the sentence from
Table 2.3.

The IOB format also helps remove ambiguity in case there are two con-
tiguous entities of same class without any word tagged as O in between. In
practice these cases are somewhat rare in several domains, and even when
trained with such tags classifiers struggle to accurately determine the bound-
aries of an entities, and thus a simplified version of this annotation without
the B- and I- prefixes is more commonly used [45].

The Stanford Named Entity Recognizer (NER), also known as CRF-
Classifier [19], provides a general implementation of (arbitrary order) linear
chain Conditional Random Field (CRF) sequence models. A CRF is a con-
ditional sequence model which represents the probability of a hidden state
sequence given some observations.

Several relevant features can be used as an input during the training
of a NER CRF classifier model. In Table 2.6, examples are presented. The
Word Shape feature is an interesting addition from recent research, as it cap-
tures the notion that most entities are written in capital letters, or starting
with capital letter, or containing numbers in the middle of the word, and
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other specific shapes.

Feature Description
Word The current word being classified.
N-grams A feature from n-grams, i.e., sub-strings of the word.

Previous Class The class of the immediate previous word.

Previous Word The previous word.

Disjunctive Disjunctions of words anywhere in the left or right.

Word Shape The shape of the word being processed captured us-
ing. In general replaces numbers with d, x to lower-
case letters, and X to upper-case letters.

Table 2.6: Examples of features used to train the CRFClassifier [19].

In addition to the above methods another useful technique is the use of
gazetteers. Gazetteers are common for geographical data, where government
provided lists of names can contain millions of entries names for all manner
of locations along with detailed geographical, geologic and political informa-
tion [26].

Relation Extraction (RE) is the ability to discern the relationships
that exist among the entities detected in a text [26], and is naturally the
next challenge after being able to detect entities. It is generally denoted
as a triplet: two entities, and the one relation between them (Table 2.7).

It can be done using Pattern Matching, Classifiers, or purely by exploiting
linguistic data available form a sentence. The previously described Pattern
Matching technique from NER can be improved upon in the Relation Ex-
traction step, and involve more than one entity, yielding binary relations.
This approach is used in tools such as PROSPERA [35] or those mined by
PATTY [36]. More specifically, examples of patterns mined by PATTY for
the graduatedFrom relation are seen in Figure 2.7.

Located_In(Kiel, Germany)

Table 2.7: An example of a triplet that represents a relation.

PROSPERA’s main technique is that not only it obtain facts based on
a small set of initial seed patterns, but also obtain new candidate patterns
that can be extrapolated from the corpus based on the mined known facts.
Once the process of obtaining new candidate patterns finishes, these are
evaluated and then added to the the existing pattern repository for re-use.
The whole process then iterates again finding even more facts from these
new patterns, and new candidate patterns [35]. Moreover, another interest-
ing characteristic of the PROSPERA’s approach is the care in Entity Dis-
ambiguation. For an example, given that in a text it finds a name, such as
‘Captain James Cook’. Tt then uses a knowledge base such as YAGO [44]
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actedin

created Pattern Domain  Range

Confidence  SupportCo-occurrence

dealsWith graduated [[con]] entered; person university
diedin

directed
graduatedFrom
happenedin sociology at; person university
hasAcademicAdvisor

hasCapital

-
s

completed [[prp]] university studies in; person organization 1

4

1

1

hasChild eamed in economics from; person organization 1
1

1

1

1

1

1

attended before studying law at; person organization
speaking [[con]] representing; person university

hasWonPrize graduated from [[det]] department of; person university
holdsPoliticalPosition
influences
isGitizenOt met [[prp]] ([adj]] wife [(det]]; person organization
isKnownFor
isLeaderOf
isLocatedin
isMarriedTo ([det]) degree in economics from; person university
isPoliticianOf
livesin
participatedin obtained [[det] doctorate at; person university 0.974

pursued [[det]] degree at; person university

[[det)) member [[det]] governing body of; person university

worked [[con]] received from; person university

[ SR Vi A O O O O VRN

¥

entered; person organization  0.975 2

playsFor majored at; person university 0.966
produced
wasBornin
worksAl received in mathematics from; scientist  university 0.963

[Idet)) graduate student in; person organization  0.965

graduated ([con]] with honors from person organization 0947

oW e oA NN

accepted [[det]] chairin; person university 0.947

Figure 2.7: An example of patterns extracted from PATTY for the gradu-
atedFrom relation.

to compare this with existing known entities, using techniques such as N-
gram comparison [35]. With such effort, PROSPERA is able to know that
Captain James Cook and James Cook are actually the same entity with a
certain confidence, and thus don’t differentiate these and assigns ‘Captain
James Cook’ as a representation of the canonical unambiguous entity ‘James
Cook’. This helps in several ways, such as: it can then know other informa-
tion about this entity, such as the fact that it is of the class PERSON; and
it can also facilitate future queries in this knowledge base, centralizing the
new information found about this existing entity.

Another tool in the Stanford CoreNLP package, the Relation Extractor
[45] is a classifier to predict relations in sentences. This program has a model
that extracts binary relations between entity mentions in the same sentence.
The output is normally in the XML [18] format and denotes the tokens of
each sentence, the possible relations, and the confidence level of these rela-
tions. The XML demonstrated in Figure 2.8 depicts a guess that 2 words in
the sentence ‘..., including approaches that use parallel computation [1, 2, 6,
13, 24/.” have the Uses relation with a confidence above 70%. The classifier
in this case also indicates that one of the entities is of the class CONCEPT.

As part of its training, annotated relation mentions are used as an in-
put together with the text it belongs to, and the annotation becomes a pos-
itive example for the corresponding label, while all the other possible com-
binations between entity mentions in the same sentence become negative ex-
amples. The feature set models the relation between the arguments by using
the distance between the relation arguments, the syntactic path between the
two arguments, using both constituency and dependency representations.

Note how at this point it’s important to note the notion of a pipeline
of natural language processing tasks. Stanford’s CoreNLP is able to, by it-
self, perform all the steps needed to produce such relation extraction output
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<relation id="RelationMention —6728">Uses

<arguments>
<entity id="EntityMention —1324">0
<span start="46" end="47"/>
<probabilities />
</entity>
<entity id="EntityMention —1319">CONCEPT
<span start="36" end="37"/>
<probabilities />
</entity>
</arguments>
<probabilities>
<probability>
<label>Uses</label>
<value>0.7379587661527921</value>
</probability>
<probability>
<label>Improves</label>
<value>0.06475441029357998</value>
</probability>
</probabilities>

22 </relation>

Figure 2.8: An example of relation extracted with the Stanford Relation

Extractor that demonstrated the ‘Uses’ relation.

17

from the raw text input. The steps of this pipeline are executed in a certain
order, as they depend on the previous step (e.g.: POS tagging is needed for
Dependency Parsing). In this case, the process was:

1
2

N e

Tokenize;

Sentence Splitter;

. Part-of-Speech tagging;

Lemmatization;
Constituency parsing;
Dependency Parsing;

Named Entity Recognition;

. and finally, Relation Extraction.

The Stanford Relation Extractor comes with a model that was trained

to extract the following relations: Live In, Located In, OrgBased In, Work_For
- and the following classes: PERSON, ORGANIZATION, LOCATION. There

are big challenges if one attempts to train the model for any relation outside
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of these, mainly in obtaining or generating annotated data to train the clas-
sifier as to generate a useful model. There are attempts in which relation
extraction is not based on annotated data, but on linguistic characteristics
of the text itself, such as its semantics. These tools are normally called Open
Relation Extractors and will be further described in Section 3.2.

2.3 Knowledge Graphs

Knowledge Graphs contain a valuable of information in a structured format,
traditionally originally mined from table-like structures form places like Wiki-
pedia [50] tables 27|, or from processes like Information Extraction as de-
scribed in the previous section. It can be used for a diverse range of applic-
ations, such as helping other systems reason about quality of harvested facts
[44], provide table-like facts about an entity [20], and question-answering
systems [22]. Moreover, recent years have witnessed a surge in large scale
knowledge graphs, such as DBpedia [27], Freebase [8], Googles Knowledge
Graph [20], and YAGO [44].

physicist
[ subclassOf

scientist
subclassOf

MNobel Prize

Figure 2.9: An example of knowledge graph from [44] plotted with vertices
and edges.

The Knowledge Graph name follows from the data structure that is cre-
ated from the facts in its final form, a graph with nodes representing entities
and edges representing various relations between entities. In Figure 2.9, it is
possible to observe an example plotted in this form. The list of possible en-
tities classes, and allowable relations between entities is known as a schema.
The schema represented in Figure 2.9 is detailed in Table 2.9; one can ob-
serve that, as an example, ‘Maz Planck’ is an entity of the type physicist.
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type(A, D) :- type(A, B), subclass0f(B, C), subclass0f(C, D)

Table 2.8: This entailment example allows one to assert that type (Max
Planck, person) is also true, based on the fact tuples presented in Table

2.9.

<Antarctic_Treaty_System>

yx
<American_Sign_Language>
v x

R

<Adelaide>
x

<August_6>
VK

<August_22>
VX

¢?|Ked7HilChCU ck> <Australia> <
~e_Arab_States_of the Gulf> . \\

<Telstra>
X

<Wesfarmers>

X A I
el g
<Australian_Securities_Exchange> 2 BN
VK £ K
<Norfolk_lsland>
X
<G-20_major_economies:
v x <Tasmania
X <Perth>
<The_Australian_Finagcial_Review> <South
v X

Figure 2.10: An example of patterns existants in YAGO.

Moreover, based on the facts presented, entailments can be made and
one trivial example is denoted in Table 2.8. More complex examples of pos-
sible reasoning can be seen in [45]. This is equivalent to traversing the graph
from a node that represents a more specific information, to a node that rep-
resents a more general information - e.g.: another possible child node of ‘sci-
entist’ could be the type ‘biologist’.

type (Max Planck, physicist)
subclass0f (physicist, scientist)
subclassOf (scientist, person)
bornIn(Max Planck, Kiel, 1858)

type (Kiel, city)

locatedIn(Kiel, Germany)

hasWon(Max Planck, Nobel Prize, 1919)

Table 2.9: Some facts regarding Max Planck, also depicted in Figure 2.9.

This example denotes a classical domain, more precisely important per-
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sons, companies, locations, and the relations between them, in which Inform-
ation Extraction (IE) tools have been very successful on.

As mentioned previously, YAGO [44] is a prominent Knowledge Graph
database, and possesses several advanced characteristics. Every relation in
its database is annotated with its confidence value. See the example of the
resulting graph in Figure 2.10. Moreover, YAGO combines the provided tax-
onomy with WordNet [33] and with the Wikipedia category system [50], as-
signing the entities to more than 350,000 classes. This allow for very power-
ful querying. Finally, it attaches a temporal and a spacial dimension to many
of its facts and entities, being then capable to answer questions such as when
and where such event took place.

WordNet is a semantically-oriented dictionary of English, similar to
a traditional thesaurus but with a richer structure [7]. More specifically, it
provides relations to synonyms, hypernyms and hyponyms, among others.



Chapter 3

Analysis and Related Work

This work intends to deliver a tool or a process in which one can extract in-
formation from academic text, more specifically Computer Science papers
form the Database and Data Mining topics. The intention is to obtain entit-
ies, and relations between these entities. The motivation is that, with such
tool, one could for an example:

e Historically research algorithms that were mostly used during a certain
time period;

e Find which algorithms are used to resolve, or related to, a certain prob-
lem;

e Find techniques that improve a certain algorithm problem, among oth-
ers.

3.1 Analysis of Academic Text

The corpus of text used was generated utilising papers published from the
following conferences during various years: ACL [49], EMNLP [16|, ICDE
[14], SIGMOD [1], VLDB [48]. More specifically, the section of Related Work
of these papers were the ones used to build the corpus. This was done due
to the characteristics and patterns of this section compared to the rest of the
paper. After careful reading, we observed that the Related Work section gen-
erally contains objective comparisons between other algorithms or softwares
in contrast with more opaque or abstract explanations form other parts of
the paper. This would mean that this section was a good candidate to start
the analysis from. Note the following examples of sentences from the Related
Work section of papers from the corpus:

1. ‘Bergsma et al (2013) show that large-scale clustering of user names
improves gender, ethnicity and location classification on Twitter.’

21
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2. ‘N-Best ROVER (Stolcke et al, 2000) improves the original method by
combining multiple alternatives from each combined system.’

3. ‘By partitioning the velocity space, the Bdual -tree improves the query
performance of the B x -tree.’

Entities from academic text in this setting are not as straightforward to
define as in, for an example, business news, or criminal news. Observe the
following sentence:

e ‘Japan’s Toshiba Corp said it had nominated Satoshi Tsunakawa, a
former head of its medical equipment division, to be its next chief exec-
utive officer.’

Text Entity Type
Japan LOCATION
Toshiba Corp ORGANIZATION

Satoshi Tsunakawa PERSON

Table 3.1: Examples of Named Entity Recognition (NER) from the busi-
ness news text example.

From the news text example above, Table 3.1 lists the entities that are
clearly noted in the text. One can observe a very strong feature which is the
common capitalization of the first letter of each of these entities. Another
characteristic is how entities from this news text example are global or un-
conditional: ‘Japan’ is a location regardless of any condition or any context
in this document. Another observation is that, referring to the Stanford’s
Relation Extraction default relations, ‘Toshiba Corp’ is an organisation Loc-
ated_In ‘Japan’ regardless of other context in this document. This contrasts
with concepts and their relations observed in academic papers, thus that
while ‘large-scale clustering’ has the Improves relation with ‘gender classi-
fication’ in the context of the paper where this data is presented, it might
not be true in all cases.

Text Entity Type
Bergsma et al (2013) AUTHOR
large-scale clustering ~ CONCEPT
gender classification CONCEPT
ethnicity classification CONCEPT
location classification =~ CONCEPT
Twitter ORG

Table 3.2: Examples of Named Entity Recognition (NER) from the aca-
demic text example.
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Moreover, the entities in Table 3.2 are harder to classify in universally
agreed classes. For an example, ‘gender classification’ can be considered an
action, or a task, or an algorithm. More generally, one can simply classify
these as concepts.

IsA(Concept,Concept)
SimilarTo(Concept,Concept)
Improves (Concept,Concept)

Employs (Concept,Concept)

Uses (Concept,Concept)

Supports (Concept,Concept)
Proposes (Author,ComplexConcept)
Introduces (Author,ComplexConcept)

Table 3.3: Some observed and possible relations between concepts.

Other possible relations from the Stanford Relation Extractor stand-
ard relations that are applicable to the above news text example are: Or-
gBased_ In (again for ‘Toshiba Corp’ and ‘Japan’) and Work_ For regarding
its newly placed chief executive officer. Again, contrasting with the academic
text, one might consider relations such as the one possibles between con-
cepts as denoted in Table 3.3. In fact, by analysing the corpus for the top 50
words in the singular third-person form, such as ‘“mproves’ or ‘employs’, one
can have an idea of the possible relations that can be extracted. This pro-
cess is illustrated in Figure 3.1: note that the top two words were removed
from the graph ( ‘s’ with a count of 41694, and ‘has’ with a count of 8157)
as their usage counts are too high compared to the other words.

3000
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o

le Q:’ 9:’ e‘: £y Q,s ] d Q’El =l el 3 ] ] Qh & el & o t? ,zfs el
S T E T E S T ST F EEE S ST
&L & & ¢ ﬁ& & & @d& & & &S ST

Figure 3.1: Samples of the most common words in the singular third-
person form, after removing the top 2 words (‘s’ and ‘has’). The y axis
represents the number of times the word in the z axis appeared in the text.
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One of the initial attempts to explore how to extract information from
the generated corpus was to use the Stanford Named Entity Recognizer
(NER) to recognize the concepts discussed so far in the academic text. To
do so, a small set of around 20 papers’ Related Work section was annotated
for the concepts contained in them using Brat [43]. An example of this an-
notated data can be seen in Figure 4.1.

The annotated data is then transformed form Brat’s standoff format
[43] into a Table Separated Value (TSV) format, using a custom script, based
on customised version of from standoff2conll!, renamed standoff2others. The
output is similar to the one showed in Table 2.5, but its simplified version
without the B- and I- prefixes.

The model was trained mostly with the recommended settings and fea-
tures, such as the word itself, its class, surrounding words and word shapes.
When applying this trained NER model (Figure 3.2), we observed that the
success was moderated, as it was, at times, able to detect clearly delineated
concepts by its shape (.e.g: capital words), but for non-capitalized words it
appeared as it would only recognize the concepts if its words were present in
the training set.

[ NN Stanford Named Entity Recognizer

exhibits low [ However, all of these studies consider the data M Concept
management system as a black-box. Mone of them maps M Entity
the sources of the hardware underutilization to the components of a B Paper

typical data management system.

0n the other hand, Wenisch et. al. [26] attribute the temporal streams in
data cache misses to the application components such as various kernel
activities, 8l interpreter, storage manager, etc. To i0zu i0n et. al. [23]
go one step further and focus only on the storage manager. They map
both the data and instruction misses coming from the different levels of
the cache hierarchy of a modern commodity server to storage manager
components and database operations. Our analysis is complementary to
these worlks since we investigate the sources of memory access owverlaps
not cache misses, within transactions and database operations.

Finally, Atta et. al. [1, 2] briefly quantify the instruction overlaps in TPC-C
and TPC-E transactions. We expand

their stuchy by exploring more transaction types, stuching the overlaps for
both data and instructions, and looking at the overlaps at the granularity
of databases operations. 5.2

There is a large body of worle on reducing instruction stalls through
improving instruction cache locality. Here we survey the ones that target
OLTP workloads specifically.

or dynamic compilation techniques [18] can optimize the

Run MER

Figure 3.2: The Stanford NER GUI (Graphic User Interface) using our
trained model.

"https://github.com/spyysalo/standoff2conll
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In this image, please observer the attempt of differentiate entities such
as CONCEPT and ENTITY. We also annotated references to other papers
using the PAPER entity, in general they appears as numbers between square
brackets. Initially, we attempted to annotated using a hierarchy where entit-
ies were very specific proper nouns, while concepts had a more loose defin-
ition, and would likely be more general concepts. During the process, how-
ever, this type of annotation also proved to be difficult as it would require
domain-specific knowledge of very deep database discussions in order to dif-
ferentiate concepts by these two classes, and could still sometimes generate
debates.

As an attempt of further improve the quality of the NER model, we
made use of a gazetteer. As part of this research, the Microsoft Academic
Graph [32] was found to contain a very relevant list of keywords and fields of
study available for download and academic use. Another custom script was
developed to transform the data from the format provided by Microsoft into
the input format accepted by Stanford’s NER shown in Table 3.4. The Stan-
ford NER utilises the gazetteer input in both ways: matching the concepts
token by token in their entirety, or in a ‘sloppy’ manner accepting a positive
match even if only one of the tokens in the gazetteer entry had a match [19].
In both cases, however, the gazetteer is treated simply as another feature
and does not guarantee that if the entries are found in the text they would
be marked as an entity [19]. The gazetteer format has its first token denot-
ing the type of the entry, all of the type CONCEPT in this case, with the
following words denoting the gazetteer entry itself, space separated. We did
not observed improvement with this addition.

CONCEPT SMOOTHSORT

CONCEPT CUSTOMISED APPLICATIONS FOR MOBILE NETWORKS
CONCEPT XML DOCUMENTS

CONCEPT JOSEPHUS PROBLEM

CONCEPT RECOGNIZABLE

Table 3.4: Format in which Stanford’s NER supports a gazetteer input.

The next step was to attempt to use the Stanford Relation Extractor
(RE). The same small annotated sample by us in Brat would also contain
the following relations: Improves, Worsen, IsA, Uses. The standoff2others
custom library was then improved to be able to generate the more complex
CoNLL format, accepted as an input for training of the Stanford’s RE, de-
noted in Table 3.5 [45]. Also, the Java parser code from the Relation Ex-
tractor had to be changed in a few places to accept custom labels (classes)
for NER.

The important columns of this format are: column 2 which denotes the
entity tag, column 3 denotes the token ID in the sentence, column 5 contains
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2 Concept 0 O NNP/NNS LSH/functions O O O
2 0O 1 O VBP are O O O
2 0O 2 O NFP fi O O O
2 0O 3 O RB rst O O O
2 0 4 O VBN introduced O O O
2 0O 5 O IN for O O O
2 0 6 O NN use O O O
2 0O 7 O IN in O O O
2 Concept 8 O NNP/NN  Hamming/space O O O
2 0O 9 O IN by O O O
2 O 10 O NNP Indyk O O O
2 0O 11 O CC and O O O
2 0 12 O NNP Motwani O O O
2 0O 13 O -LRB- [ O O O
2 O 14 O CD 7 O O O
2 0O 15 O -RRB- | O O O
2 0O 16 (@) O O O
0 8 Uses

Table 3.5: Format in which Stanford’s Relation Extractor accepts its train-
ing input.

its Part-Of-Speech tag, and column 6 which contains the token itself. For
this specific process, POS tags were obtained from the Google Syntaxnet
Software [46, 3|, which were generated in separated and then joined with the
token for the final CoNLL output.

The results from the RE trained model, one of which is depicted in Fig-
ure 2.8, were much poorer compared to the NER output, and we failed to
find interesting relations with confidences above 50%. In both cases, after
analysing the models we were able to generate using the NER and the Rela-
tion Extractor software from Stanford, it was clear that much more annot-
ated data would be needed as to achieve higher quality results.

Please refer to Section 4.1 for more information on tools mentioned in
this section.

3.2 Open Information Extraction

Since we had no access to annotated data, we turned to a different approach
called Open Information Extraction in an attempt for better results. This
approach uses linguistic information from the text, among other techniques,
as to attempt to extract the relations without the need of labelled data for a
trained model.
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Text

Extracted relation

‘We stress that our method improves a super-

vised baseline.

improves(our method ; supervised
baseline)

(2008) demonstrate that adding part-of-speech
tags to frequency counts substantially improves

performance.

Experiments with an arc-standard parser
showed that our method effectively improves
parsing performance and we achieved the best
accuracy for single-model transition-based

parser.

achieved(we ; best accuracy for single-
model transition-based parser)

is with ( Experiments , arc-standard
parser)

(2007) revealed that adding non-minimal rules
improves translation quality in this setting.

adding(translation quality ; rules)
is sn(translation quality ; setting)

(CBS Detroit, 2011-02-11) improves substan-

tially over prior approaches.

improves over(CBS Detroit ; ap-
proaches)

improves substantially over(CBS De-
troit ; prior approaches)

improves over(CBS Detroit ; prior
approaches)

improves substantially over(CBS De-
troit ; approaches)

27

Table 3.6: Examples of results from the Open Information Extraction soft-
ware from Stanford, Stanford OpenlE.

Stanford’s OpenlE [4] is the first of these tools which we experimented
with and works by utilising two classifiers, both applied on linguistic inform-

ation from the text. The first one works at the text level and attempts to
predict how to yield self-contained sentences from the text. As it processes

the text, this classifier decides on three possible action: yield, which outputs
a new sentence; recurse, which navigates further in the dependency tree arcs
for the actual subject of the sentence; or stop, which decides then not to re-

curse further.

Comparison OpenlE sample parameters NER sample Result
type output

At least 1 full . . . .

match Exists(Entity One ; Entity Two Three) Entity One True
At least 1 full . . . ] .

match Exists(Entity One ; Entity Two Three) Entity Four False
At most 2- Exists(Entity One ; Entity Two Three) Entity Two True
grams

At most 2- Exists(Entity One ; Entity Two Three) Two False
grams

Exact match, . . . . Entity Two

both equal Exists(Entity One ; Entity Two Three) Threo True
Exact match, . . . . ]
both equal Exists(Entity One ; Entity Two Three) Two False
1-gram Exists(Entity One ; Entity Two Three) ?Etrletg Two True
l-gram Exists(Entity One ; Entity Two Three) Two True
1-gram Exists(Entity One ; Entity Two Three) Four False

Table 3.7: List of heuristics attempted when trying to combine OpenlE

with NER results. Note that the At least I comparison type is the only one
that accepts that yields true by matching only 1 of the OpenlE parameters,
all others are comparing both OpenlE parameters against NER resulted en-

tities.
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Once these sub-sentences are decided upon, its linguistic patterns are
then further used to help a second classifier which will decide the format of
the relation to be returned. It tries to yield the minimal meaningful pat-
terns, or relation triplets, by carefully deciding with arcs to delete from the
dependency tree, and which arcs are useful.

In some experiments, we observed that when applied to academic text,
in the context of searching for the Improves relation (see Table 3.3 for a
proposal of possible useful relations to be extracted), OpenlE can end up
observing the pattern but not including in its output, or including it in a
non-canonical form. For an example, Table 3.6 shows the output for a small
range of sentences. Row 1 of this table shows a correct extraction, while row
2 shows a similar sentence that however yielded no result. Rows 3 and 4
present a situation where the Improves relation could be observed but it is
not extracted, while row 5 shows a situation where this relation is present,
but its non-canonical form is extracted with some other variations. Regard-
ing this presented data, one observation is that OpenlE does not know what
the researcher is after when extracting information from the text. While this
might be interesting in several cases (i.e.: in early iterations with a corpus,
as to observe what are the kinds of relations one could possibly find), the
tool might not include relevant results once a specific type of relation is be-
ing sought after.

Comparison

Result
type

is in(Several research projects ; databases)
focuses on(IVM ; xed query)

is in(IVM ; DBToaster)

At least 1 has(IVM ; has developed)

aggressively pre-processing(IVM ; query)
computing query over(we ; database)

utilizing constraints in(IVM ; IVM)
hash(k ; functions)
focuses on( Association Queries Prior work ; association

~ queries)
ArtaESSt 2 deploy(RDF data ; own storage subsystem tailored to
g RDF)

using (String Transformation ; Examples)
combining(Samples ; samples)

Exact match N/A

are(Spatial kNN ; important queries worth of further
studying)

are(graph databases ; suitable for number of graph
processing applications on non-changing static graphs)
have(several graph algorithms ; With increase in graph
size have proposed in literature)

compute(I/O efficient algorithm ; components in graph)
builds on(Leopard ’s light-weight dynamic graph ; work
on light-weight partitioners)

are related to(Package queries ; queries)

1-gram

Table 3.8: Sample of results of combining output from OpenlE with NER.

Further exploring OpenlE’s potential, an experiment we did was to
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attempt N-gram matching with the OpenlE results as to cross-analyse its
output with the NER results from the model trained, as explained in Sec-
tion 3.1. More precisely, given the relation and its 2 parameters extracted
from the text, what are the relations in the output from Stanford OpenlE in
which the parameters match an recognized entity from the output of Stan-
ford NER. The types of comparisons done are depicted in Table 3.7 and
some selected results are in Table 3.8. In general, we found this approach

to yield only a very small number of the possible results, while also present-
ing inconsistencies (too much variation) in regards to the types of relations
obtained.

As a similar tool, ClauslE, a Clause-Based Open Information Extrac-
tion [15] from the Max-Planck-Institute runs the sentences through a de-
pendency parser, and use rules in order to find relations from constituents.
ClauselE starts finding clauses (candidate relations) by searching for subject
dependencies (nsubj, csubj, nsubjpass, csubjpass), and then parse the entire
sentence to get the contents of this relation. More precisely, in this final pro-
cess it then attempts to detect the type of the sentence based on a sequence
of decisions, as to match a known type of sentence. These types of phrases
take into consideration all dependencies of the constituents of this clause,
and then classify them as, e.g.:

e SV: Subject and Verb, such as: Albert Fistein died;
e SVA: Subject, Verb and Adverb, such as: AFE remained in Princeton;

e SVO: Subject, Verb and Direct Object, such as: AE has won the No-
bel Prize;

e Among others.

With all this information at hand, it then yields relations by deciding the
combinations of constituents that will form a relation. An on-line demo? ex-
ists in which its capabilities can be observed.

In contrast, AllenAI’s OpenlE [17] utilises the text linguistic informa-
tion in a different manner. As a first step it apply a Part-of-Speech tagging
in the text and the NP-chunks of the sentence are then obtained through
constituency parsing, both process are done using the Apache OpenNLP
parser [5]. It then utilises regular expressions on the result as to restrict
the patterns to be treated. More specifically, it obtain the relations through
searches for clauses in the format V' / VP | VIW*P, where V is a verb or ad-
verb, W is a noun, adjective, adverb, pronoun or determiner, and P is a pre-
position, particle or information marker. Once the clause is identified it uses
a custom classifier called ARGLEARNER to find its arguments Arg! and

Arg2 and the left bound and the right bound of each argument.

*nttps://gate.d5.mpi-inf .mpg.de/ClausIEGate/ClausIEGate
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Some approaches rely on human intervention as to control the quality
of the extracted relations, or to guide the types of relations needed. Extreme
Extraction 23] provides an interface where one can narrow sentences for a
given relation; provides suggestions for words surrounded by similar context;
and allows for extraction rules creation using logic entailments. AllenAl’s
IKE [13] is also a tool of similar nature, and provides its own query language
which resembles regular expressions which apply at the Part-of-Speech level,
or NP-chunks. It also provides powerful suggestions using probabilistic tech-
niques as to narrow rules that are too general, or broadens rules that are too
specific. IKE also provides a way to define a schema to store the items found
by the rules from its query language for faster reuse as smaller parts of more
complex conditions.

All tools described in this section are similar in nature to our tool, thus
describing the related work.

3.3 Peculiarities of Academic Text

It was clear that existing model-based tools for IE, such as the ones shown
in Section 2.2, do not come equipped to predict relation in Academic Text,
mainly due to the different classes of entities presented. Academic text, how-
ever, has some characteristics that facilitate in some sense its parsing. More
specifically, the language used in academia is more strict and precise, and
does not contain attempts of inventive language or linguistic creative which
would be common in romances or other type of written information such as
literary books. We also did not observe academic text present difficult to un-
derstand notions, such as sarcasm or humour. We then attempt to remove
complexity further by narrowing our scope to papers from the database area,
such as noted in Section 3.1.

During our experimentation with manually tagging data, described in
Section 2.2, this text also presented itself very difficult to tag by humans, as
it would sometimes require domain knowledge on very advanced or narrow
areas of the database topic.

The text also present a high number of coreference problems, e.g.: ‘their
work’, ‘the technique explained in [X]’, or simply ‘/X] facilitates this by using
a certain algorithm’. In these previous examples X would represent a num-
ber, generally a reference to another academic paper. One technique to al-
leviate these problems could be to parse the above references numbers and
replace with the paper name or technique names from the papers.
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Developed Workflow

We developed an open information extraction tool that is capable of extract-
ing information from academic text with the following characteristics:

A verb-centric search query (normally a verb in the 3rd person singu-
lar);

Exploiting linguistic properties of the text by obtaining this text Part-
of-Speech tags and Dependency Tree using SpaCy [24, 42];

Caching techniques for the parsed values for faster future re-runs, or
iterations in adjusting rules in case one wants to customize the code
further.

Some other minor adjustments in the text parsing, away from defaults,
to improve performance and quality.

Local optimisations and adjustments within the tree from the verbs
perspective as to prepare the relations for the output. More specific-
ally, by local we mean near the nodes in the tree in which the verb is
found to be in.

Ability to export triplets for monotransitive verbs, or simpler relations
for intransitive verbs, with optional parameters.

The output of the relations in an HTML [25], and graphical way for
easy grouping and visualisation using Graphviz!.

Or the output in a machine-readable way, the JSON [9] format.

With these characteristics, the tool is able to extract information from

text for both analysis and further fine-tuning by a competent Python de-
veloper, or for down-the-line processing by another software.

"http://www.graphviz.org/

31


http://www.graphviz.org/

32 CHAPTER 4. DEVELOPED WORKFLOW

Our corpus was generated using an extraction process developed by
Haojun Ma and Wei Wang at the University of New South Wales [28], which
uses the pdftohtml? tool. All academic papers were downloaded into indi-
vidual file-system directories, generally in the PDF [2]| format. In each folder
the conversion occurs by detecting the PDF file’s layout and further detec-
tion and extraction of the ‘Related Works’ section. Files are then centralized
in a single folder for parsing.

4.1 Tools

This section describes the tools used in the system we built.

4.1.1 Programming Languages and Libraries

Java® is a programming language used in several of NLP tools, such as Stan-
ford’s CoreNLP [29] and Apache OpenNLP [5]. Java is an imperative, static-
typed, compiled language and provides several utilities such a comprehensive
standard library and strong Unicode? support.

Python® on the other hand is a scripting language that has been re-
cently associated with Data Analysis® due to its powerful built-in idioms for
data processing and its clean syntax. Although not as fast as a compiled lan-
guage, it has the ability to have more low-level extensions through tools such
as Cython”, which is used for an example by the SpaCy [24, 42| parser.

Due to familiarity and above points, we have chosen utilising SpaCy
and Python (version 3.4) to develop this tool. In addition, some modules
(external libraries, or external dependencies) from the Python ecosystem
were used, such as: requests® and BeautifulSoup4” for downloading data
from an Web Server; standoff2conll!® for experiments with Brat and Stan-
ford’s Relation Extractor data transformation; and corpkit!! for some text
queries like concordance (e.g.: other words that appear in the same context,
or surrounded by similar words) and lemma-based search instead of token-
based during an early exploratory stage of this research. Note that corpkit
utilises corenlp-xml'? as a way to parse Stanfords CoreNLP output in Py-

Zhttp://www.foolabs.com/xpdf/download.html
3https://docs.oracle.com/javase/specs/
‘http://unicode.org/standard/standard. html
*https://docs.python.org/3.4/reference/

6https://www.quora.com/Why-is-Python-a-language-of-choice-for-data-scientists

"http://cython.org/
8http://docs.python-requests.org/en/master/
“https://www.crummy . com/software/BeautifulSoup/bs4/doc/
Yhttps://github. com/spyysalo/standoff2conll
"https://interrogator.github.io/corpkit/
2https://github.com/relwell/corenlp-xml-1ib
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thon. For generating HTML output we used Django'® template engine in
standalone mode.

4.1.2 Stanford CoreNLP

Stanford CoreNLP [29] is an integrated framework of linguistic tools writ-
ten in Java. As discussed and presented in previous section in more detail
(Sections 2.1 and 2.2 and 3.2), it is done in this way with the intent of facil-
itate the creation of pipelines in which more fundamental tools are executed
earlier in the process, generating output in which other of these tools build
upon. In the CoreNLP each of these tools are called annotators. It provides
the following annotators out of the box: Tokenization; Sentence Splitting;
Lemmatization; Parts of Speech; Named Entity Recognition (described fur-
ther in this document in Section 2.1); RegexNER (Named Entity Recog-
nition); Constituency Parsing; Dependency Parsing (also in Section 2.1);
Coreference Resolution; Natural Logic; Open Information Extraction (Sec-
tion 3.2); Sentiment; Relation Extraction (Section 2.2); Quote Annotator;
CleanXML Annotator; True case Annotator; Entity Mentions Annotator.

4.1.3 NLTK

NLTK [7] is a popular Python toolkit, or set of libraries for NLP, gener-
ally associated with its companion book and popular in introductory NLP
courses. NLTK provides interfaces to over 50 corpora and lexical resources
such as WordNet [33], along with a suite of text processing libraries for clas-
sification, tokenization, stemming, tagging, parsing, and semantic reasoning.
Stemming is a concept related to simplifying the handling of variations of
words, such as plural or past tenses, in a more simple way than lemmatiza-
tion. In stemming the root (or certain prefix range) of a word is kept while
its varying part is removed.

NLTK also provides implementation of classification algorithms that
can be trained for further text classification, and grammar parsers that can
be defined and used, for example, to return a NP-chunking tree. It also has
interfaces to the Stanford CoreNLP pipeline, so it can be used to externalise
operations to it. While heavily used in an interactive manner together with
Jupyter!? in early exploratory stages of this research, only parts of its tree
data structure remain used in some stages of the final developed workflow of
this work.

Bhttps://www.djangoproject.com/
“https://jupyter.org/about.html


https://www.djangoproject.com/
https://jupyter.org/about.html

34 CHAPTER 4. DEVELOPED WORKFLOW

4.1.4 Syntaxnet

The Syntaxnet parser [46] is a Tensorflow!® implementation of the models
described in [3]. TensorFlow is an Open Source Software Library for Ma-
chine Intelligence developed by Google. Syntaxnet parses a document or
text feed through the standard input and outputs the annotated text in the
CoNLL format (see sample in Table 3.5), accepted as an input for training of
the Stanford’s RE.

In this project, Syntaxnet was used in the experiments described in
Section 2.2 when adding Part-of-Speech tags for the Stanford Relation Ex-
tractor training input.

4.1.5 SpaCy

SpaCy [42] is Python/Cython NLP parser that provides Tokenizing, Sen-
tence Segmentation, Part-of-Speech tagging and Dependency Parsing [24].
Although this encompasses less functionality in comparison with CoreNLP,
the processing is done in a very fast manner, and conveniently into the Py-
thon language. SpaCy features a whole-document design: where CoreNLP
for an example relies on sentence detection/segmentation as a pre-process
step in the pipeline, spaCy reads the whole document at once and provides
Object-oriented interfaces for reaching the data. A web interface DisplaCy'6
is also available for more impromptu checks on its dependency parser out-
put.

More specifically, the hierarchy of Object-oriented classes are:

e English: the class that loads the language model for further parsing.

e Doc: it accepts a document as it is input, parses it, and then provides
iterators for sentences, and tokens.

e Span: A group of tokens, e.g.: a sentence, or a noun-chunk.

e Token: A token. It contains its raw value, position in the document
and in the sentence, POS tag information at different granularities
(Table 2.1), and position in the dependency tree.

4.1.6 Brat

Brat [43] is a web-based tool, written in Python, for text annotation. It
provides a method for define possible annotations, number of parameters,
and possible relations between these annotation. Once this is defined, the

Bhttps://www.tensorflow.org/
https://demos.explosion.ai/displacy/
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interface allows for text selection and point-and-click, drag-and-drop inter-
faces to facilitate such annotation process. See Figure 4.1 for an example of
annotated text.

Since Brat is designed in particular for structured annotation, the text
or data observed is in free form text, but will then have a rigid structure
for future machine interpretation. As noted in Section 2.2, we developed a
data transformation tool from the standoff format used by Brat named stan-
doff2others, extending the existing standoff2conll'” library.

[«]=

Collection Data Search

Concepi| Concept

LSH functiens are first introduced for use in Hamming space by Indyk and Motwani [7].

(Cancept/ [Cancapy T \t:E

LSH functions based on p-stable distribution in Euclidean space are introduced by Datar et al.[2], which leads to E2LSH for processing memory dataset.

Concept] [Concept)

E2LSH builds physical hash tables for a series of search radii, and hence results in a big consumption of storage space.
One space saving alternative is to use a single "magic” radius to process different queries [5].

However, such a “magic” radius is hard to decide [15].

Concept| Entity Entity)

Virtual rehashing is implicitly or explicitly used in LSBForest [15] and caLsH [4] to avoid building physical hash tables for each search radius.

Uses.
~{Enty Concept [Concept)

Virtual rehashing used in QALSH is much simpler and more effective than that of C2LSH due to the use of gquery-aware LSH function.

Uses
[Concept’ ~Concept) Concept) (Concept)

Specifically, virtual rehashing of QALSH does not involve any random shift and floor function, and is carried out in a symmetrical manner.

Figure 4.1: The Brat rapid annotation tool, an online environment for col-
laborative text annotation.

4.1.7 Graphviz

m m m

Figure 4.2: The resulting graphic from graphviz from the Figure 4.3 DOT
specification.

Graphviz!® is open source graph generation software. It utilises a graph

"https://github.com/spyysalo/standoff2conll
®http://www.graphviz.org/
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describing language called DOT' which is used to generate the graphs using
the distributed DOT binary that companions the Graphviz distribution.

In this project, we used its Python wrapper?, which allowed for seam-
less generation of the DOT file straight from Python objects. As an ex-
ample, Figure 4.3 shows the specification in DOT language that generated
the graphic image in Figure 4.2

digraph uses {
node [shape=box]
1376 [label=VERB]
1378 [label="777"]
1376 -> 1378 [label=obj]
1379 [label="777"]
1376 -> 1379 [label=subj]
1377 [label="777"]
1376 -> 1377 [label=advcl]

Figure 4.3: The DOT language.

4.2 Developed Program

Our developed program, namely corpus_analysis.py, accepts as an input a
file-system folder of raw text and a verb in its singular third person form,
and it then outputs relations of the parameters surrounding that verb in the
sentence, aiming for a triplet relation type such as the format: Relation (
Argumentl ; Argument2 ). Figure 4.4 presents the HTML output of the
program rendered in a Web Browser.

To some extent, our current approach is similar to that of ClauselE, in
the sense that it completely relies on the dependency parsing tree, but with
several key differences:

e Due to this verb-centric nature, since the verb is the relation being
searched for and is part of the input, our tool tailors the extraction
process for each different verb. It does so in the sense that ignores
parts of the corpus that does not contain the token we are searching
for, as long as there is a sufficiently large corpus to find typical usage
of the verbs;

e Instead of heuristically determining whether or which PP-attachment,
(named ‘A’ as in the SVA sentence type) to be used as object of the

Yhttp://www.graphviz.org/doc/info/lang. html
2nttps://pypi.python.org/pypi/graphviz
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verb, we can do it more accurately given that the verb is given as an
input. The same is true for ‘O’ in the SVO sentence type;

e Also, we extract more than binary relations with an optional typeless
argument as ClauselE did. The output is more in line with these se-
mantic functional analysis of verbs, as in PropBank [38], or VerNet
[39];

e ClauselE classifies the sentence being extracted against a list of pos-
sible sentences using a decision tree, and then uses this information to
decide how to extract the information. In contrast, our method simply
applies a sequence of rules in an arbitrary order that attempts to reach
out for information in case it is missing in the nodes near the position
of the verb in the dependency tree;

e Finally, it utilises SpaCy for dependency parsing instead of Stanford
CoreNLP. This might affect technological choices as this process could
more easily fit into a Python-based pipeline.

VERB

subj prep “\obj

7 m? 7

This group has 62 sentences.

Sentence: 0 improves  ( subj: structured retrieval ; obj: answer ranking )
( prep: for factoid questions )

Recent work has showed that structured retrieval improves answer ranking for factoid questions: Bilotti et al (2
question and the expected answer types improves answer ranking.

Rules appplied were: Growth bring_grandchild_prep_or_relcl_up_as_child, Reduction.remove_tags
Sentence: 1 improves  ( subj: HMM-smoothing ; obj: Structural Correspondence Learning technique in experiments )

( prep: on the most closely related work )
( prep: for domain adaptation )

HMM-smoothing improves on the most closely related work, the Structural Correspondence Learning technique
Rules appplied were: Growth bring_grandchild_prep_or_relel_up_as_child, Reduction.remove_tags, Obj.remov
Sentence: 2 improves  ( subj: bidirectional model ; obj: precision and recall relative )
( prep: to all heuristic combination techniques , including grow-diag-final ( Kochn et al , 2003 ))
The bidirecrional model improves both precision and recall relative 1o all heuristic combination rechniques, inc.
Rules appplied were: Growth.bring grandchild prep or relel up as child, Reduction.remove_tags, Obj.remov
Sentence: 3 improves  ( subj: Son et al 2012 ; obj: translation quality of n-gram translation model )
( prep: by using a bilingual neural language model )
(Son et al, 2012) improves translation quality of n-gram translation model by using a bilingual neural language

Rules appplied were: Reduction.remove_tags, Subj.remove_tags

Figure 4.4: The HTML output generated by our program. Note how it
organizes sentences orders by its grouping.
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Algorithm 1 Main loop

1: procedure SIMPLIFIEDGROUP( files, verb)

2 for sentence,token in GETTOKENS(files,verb) do
3 ApPPLYGROWTHRULES(token)

4: APPLYREDUCTIONRULES(token)

5: AppPLYOBJRULES(token)
6
7
8
9

ApPpPLYSUBJRULES(token)
relations < EXTRACTION (token)
ADDTOGROUP(sentence, token, relations)
end for
10: GENERATEOUTPUT(groups)
11: end procedure

Contrary to other tools, such as Stanford OpenlE, we are extracting
only explicit information. There is no logical reasoning to better present the
information obtained and that is implicit in the text. Moreover, we do not
try to match the results of our tool against any knowledge database with the
intention to compare what is being learned from the natural text with.

The main algorithm of our tool is simple in the sense that the goal is to
process all entries found in the text containing the verb being looked after.
Note that, in Algorithm 1, token is actually a node in the dependency tree,
thus why rules are applied directly into the token variable. The main loop
then extract the relations and prepare the grouping presentation. After all
this is done, the output is then generated. The goal of the HTML output is
for human evaluation and analysis, while the goal of the JSON output is for
down-the-line processing by other program.

Algorithm 2 implements a Python iterator?! using the yield keyword.
It starts by attempting to find a copy of the parsed tree already cached for
performance purposes. If a cached version exists, it is used instead. Cach-
ing was implemented as follows: A cache entry has a key, which combines
the verb being searched for and the date in which the input folder containing
the raw text was last modified. This means that a cache entry can only be
found if the folder was not modified and the verb being searched for now was
already searched for before. We had to implement our own tree data struc-
ture that mimics the SpaCy data structure since the SpaCy tree was not
serializable with Pickle??, the Python library responsible for serialization.

In line 9 of Algorithm 2 we can see that the cacheableTreeNode variable is
the same as the token variable, which is yielded later on by the function.

Algorithm 3 depicts the grouping of sentences by representation in a
dictionary, which is the Python equivalent to a hash-table. In line 2, one can

2'nttps://docs.python.org/3.4/reference/expressions.html#
generator-iterator-methods
nttps://docs.python.org/3.4/library/pickle.html
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Algorithm 2 Iterator to tokens and sentences
1: procedure GETTOKENS( files, verb)
2 finalList <~ GETFROMCACHE( files)
3 if NOT finalList then
4 list < GETFILESWITHVERB( files, verb)
5: finalList < || > Empty list
6
7
8
9

for text in list do
rawParsed < PARSERAWTEXT (text)
spacyParsed < ENGLISHSPACYMODEL(rawParsed)
cacheableTreeNode < TRANFORMTREE(spacyParsed)

10: ApPPENDTOLIST( final List, cacheableTree N ode)
11: end for

12: SAVECACHE( final List)

13: end if

14: Yield each token,sentence from finalList

15: end procedure

ulalbcdl
e [f [g h] i]
k

Figure 4.5: A tree denoted using QTREE.

see the GROUPQTREEREPR method which, given the token data struc-
ture, generated the QTREE [41] representation of it for grouping purposes.
Note that this is not the full tree, but only a smaller version used for ana-
lysis as described in Section 4.3. The QTREE representation was chosen to
be the canonical representation of the tree data structure, and is then used
as the key of the dictionary. This is the result of a performance optimisa-
tion on earlier versions of the tool, which instead compared the tree which
already existing entry in a list before deciding if it already existed in it or
not. This brings this part of the process asymptotically from O(n) time to a
much faster in practice constant O(1) time.

In QTREE one uses the square brackets symbol to denote the edges
and the hierarchy of the tree in text mode, resulting in a string representa-
tion of it. See an example in Figure 4.5.

Some specific adjustments were added to the procedure PARSER AW-
TEXT (in line 7 of Algorithm 2), as follows:

e Applies a regular expression to replace all ‘et al.’ strings with an empty
string. This is done to improve sentence segmentation in SpaCy which
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Algorithm 3 Accumulate sentences

1: procedure ADDTOGROUP(sentence, token, relations)

2 groupRepr < GROUPQTREEREPR(token) > Group representation
3 GENERATESENTENCEIMAGE(sentence)

4 GENERATEGROUPIMAGE(groupRepr)

5: if groupRepr not in groups then
6

7

8
9:

ApPPENDTOGROUP(groups, groupRepr)
end if
APPENDTOGROUP(groups|grouprepr], Sentence, relations)
end procedure

was in several occasions specifically confusing the term with a sentence
boundary;

e Another small tweak was done in the SpaCy tokenizer as to not split
words that contain a dash in the middle, such as ‘data-mining’. A file
called infix.txt23, which is part of the SpaCy data, contains a set of
regular expressions for the tokenizer, and the (?7<=[a-zA-Z])-(?=[a-zA-z])
responsible for tokenizing words with a dash symbol was then deleted.
This change made the tree simpler in some situations by reducing the
amount of punctuation nodes;

e Removed unicode characters from the output by using Python filters to
achieve so;

e Added a regular expression to remove citations of the type ‘(Lenat,
1995)°. This avoids SpaCy breaking these as nodes in the tree and di-
minishes the chances of misclassifications of the dependencies.

4.3 Grouping Sentence Types

This section further describes the purpose of the GROUPQTREEREPR method
from Algorithm 3. The grouping of the sentences was done with the goal

to facilitate human local analysis. There are four possibilities for group-

ing: based on the verb node (the original verb in which the relation is being
searched for), based on the subj node, based on the 0bj node, and based on
any other of the optional relations nodes.

28More precisely, when using virtualenv, it sits in in the following location:
.env/1ib/python3.4/site-packages/spacy/data/en-1.1.0/tokenizer/infix.txt. Vir-
tualenv is a method of installing Python packages only to the local scope of a project,
without affecting the traditional global folder where packages are installed (which affect all
Python programs in the computer) - more information about virtualenv can be found at
https://virtualenv.pypa.io/en/stable/.
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punct /prep \dobj nsubj

with embodiment MACK
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MACK uses articulated graphical embodiment with ability to gesture.

Figure 4.6: The Graphviz output generated by SpaCy dependency tree.

The grouping works as follows. Given the node the grouping is based
on, the immediate children are extracted and a new tree is formed only with
the node plus its children. For an example, given the sentence ‘MACK uses
articulated graphical embodiment with ability to gesture.’. Suppose we are
searching for the Uses relation. The dependency tree from SpaCy is gen-
erated and presented in Figure 4.6. The token being analysed by the al-
gorithm is then the word uses, at the top of the tree. The tree has four child
nodes, however we disregard the actual child nodes values, and pay attention
only to the actual dependencies, or edges values, between token and its chil-
dren. This results in the summarized version of the tree presented in Figure
4.7. This is the tree that represents this sentence in this grouping.

VERB
77 M7 M7

Figure 4.7: The group of the sentence from Figure 4.6.

Note that the punct dependency is missing in the final group, and this
is due to the rules applied by Algorithm 1 to this resulting tree as to ad-
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just and improve the grouping. More precisely, we wanted to ignore the
punct dependency in the group, as it had no observed effect in our analysis
of the tree and the location of the subj-like and dobj-like dependencies we
are mostly after. This will be explained further in Section 4.4.

We also used a similar grouping in an attempt to observe the other
parameters that are optionally part of the relation, assuming they would
be attached to the token node by SpaCy. This would be more in line with
efforts such as PropBank [38], or VerNet [39]. A more complex example is
the sentence ‘Our work not only improves the CPU efficiency by three orders
of magnitude, but also reduces the memory consumption’ which, through the
same process, produces the group representation in Figure 4.8.

VERB

‘/Aﬁm p\im subj
y_
?

m? 77 77

m 77 77

Figure 4.8: A more complex example of sentence grouping.

4.4 Dependency Tree Manipulation Rules

This section further describes the purpose of the rule application methods
in the main loop of Algorithm 1. During the process of obtaining the trees
for the searched verb, several rules are applied as to organise the tree in a
way that facilitates the extraction method. These rules are applied by four
different Python classes: Growth, Reduction, Obj, Subj, in this order. We
use a custom annotator to identify which methods of these classes are ac-
tual rules to be applied. The rules are applied in the order they appear in
these classes. The addition of new rules, in an investigative setting, simply
requires the addition of an annotated method in any of these classes.

The Growth and Reduction classes apply the rules from the perspective
of the node which represents the verb being looked for, i.e., the method re-
ceives the verb as the node to do the analysis on. The Growth class intends
to have rules which cause currently unavailable information to be obtained
from other parts of the tree, while the Reduction class intends to have rules
that remove irrelevant information.

Moreover, in the Obj and Subj classes, the rules are applied on the
node that currently represents respectively:

e obj-like relations: Direct Object (dobj); Object of Preposition (pobj),
Indirect Object (i0bj); or
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e subj-like relations: Nominal Subject (nsubj), Clausal Subject (csubj),
Passive Nominal Subject (nsubjpass), Passive Clausal Subject (csuby-
pass) [31].

Further describing the tree structure, it is important to note the strong
characteristic that every node of the dependency tree can have from 0 to n
children, however exactly 1 head (or parent) node. For each actual node de-
pendency tree, we also generate a separate tree representation which is used
for grouping. In some cases (which will be denoted), these rules apply only
in the representation and not to the original tree. This means that, although
we want some trees to be grouped together to facilitate analysis, the original
version might still be used for the rule extraction.

A final class called Extraction apply a single extraction method which
obtains the parts of the relation after all rules above are applied. The ex-
traction method trivially outputs all the child nodes from the node that rep-
resents the verb which is the relation being looked for. The rules are defined
as follows.

As a baseline example to start with, note the sentence ‘We stress that
our method improves a supervised baseline’ where the tree generated by the
dependency parser is already ‘optimal’, in the sense that the information
is ready to be extracted without any tree manipulation. See Figure 4.9 for
the dependency tree. The extracted relation by our tool is improves ( our
method ; supervised baseline ), which is basically the text form of the
verb sub-trees. Consequently, we list now the rules created for our system
to increase its ability to extract information in other ‘non-optimal’, more
complex trees.

strees

ccomp

improves
dobj mark

baseline
amod
poss
supervised our

Figure 4.9: A sentence whose relation can be obtained without tree manip-
ulation.

Rule 1 (Growth). If the edge to the head node is of the type relcl or ccomp,
and the existing subj-like child node does not have the POS tag NOUN,
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PROPN, VERB, NUM, PRON, or X, replace the subj-like child node with
the immediate head node. If there is no subj-like child node, simply move the
head node as to be its subj-like child.

In Rule 1, we replace the subject when in a relative clause or clausal
complement. In this setting, it is common that the verb does not have a
subj-like child node, or that it has a non-meaningful one (such as ‘which’,
or ‘that’). Note how this situation occurs in the sentence ‘Calvin [21] is a
distributed main-memory database system that uses a deterministic execution
strategy’, when searching for the ‘uses’ relation. Figure 4.10 shows the raw
tree from the SpaCy dependency parser, and Figure 4.11 shows it after the
rule application. The relation extracted in this case is: uses ( distributed
main-memory database system ; deterministic execution strategy ).

nsubj attr

relel

compound
amo d amo d

det

’ distributed ‘ ’ Main-memory ‘

’ database

dobj nsubj

strategy
compound det
amod

execution ‘ ’ deterministic ‘

Figure 4.10: A sentence that depicts a tree in which the application of
Rule 1 is possible (before).

Rule 2 (Growth). If the current node is part of a conj relation through its
head edge, and no subj-like child node exists, search for a subj-like child
node in the parent (a sibling node). Recurse in case this is not found and
the head edge is again a conj.

In Rule 2, we obtain subject from parent if in a conjunct relation. This
normally occurs once the parser decides that the relation being searched for
is part of a bigger set of relations the subject of the sentence is part of. For
an example, note in Figure 4.12 how the sentence ‘SemTag uses the TAP
knowledge base5, and employs’ depicts the subject ‘SemTag’ being further
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nsubj

dobj

relcl

nsubj

strategy
compound det compound
amod
amod amod | det
execution ‘ ’ deterministic ‘ ’ distributed ‘ ’ MaIN-memory ‘ ’ database

Figure 4.11: The sentence from Figure 4.10 after application of Rule 1.

away from the verb ‘employs’, the relation being searched for. In this case,
before the rule application ‘SemTag’ is a sibling node of ‘employs’, both be-
ing child nodes of ‘uses’.

conj

nsubj conj

employs employs

dobj nsubj dobj

@@ ’ SemTag ‘ ’ similarity

]

Figure 4.12: A partial tree of a sentence that depicts a situation in which
the application of Rule 2 is possible (before on the left, and after the applic-
ation on the right).

Rule 3 (Growth). If no obj-like child node exists, transform nodes xcomp or
ccomp n a dobj. If no subj-like child node exists, transform nodes xcomp
or ccomp @n a nsubj.

Rule 4 (Growth). If no obj-like child node exists, transform prep relation
whose preposition word is ‘in’ in a dobj node.
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Rules 3 and 4, handle further transformations, or edge renaming, on
existing child nodes to improve relation extractions. In Rule 3 the clausal
complements with both internal or external subjects, which often contain the
missing part of a relation are renamed to be the subject of or object of the
sentence.

An example for Rule 4 is the partial sentence ‘matriz co-factorization
helps to handle multiple aspects of the data and improves in predicting in-
dividual decisions’, when searching for the ‘““mproves’ relation. Normally,
the parser annotates ‘in predicting (...)" as a sub clause with a prep edge
relation, however, in this case, this clause does contain the object being im-
proved by the subject.

Rule 5 (Growth). If no obj-like child edge exists, a subj-like child edge ex-
ists, and the head edge is of the subj-like type, move the head node as to be
its dobj-like child.

Another rule that does tree manipulation, Rule 5 caters for situations
where the relation being searched for is itself found in a subj-like edge con-
nected with its head node. Figure 4.13 notes this rule being applied in the
sentence ‘This work uses materialized views to further benefit from common-
alities across queries’, when searching for the ‘uses’ relation.

materialized uses

nsubj j nsubj dobj

’ work ‘ ’ materialized

nsubj det dobj
wo@ ’ The ‘ ’ VIeWs ‘
det
The ]

Figure 4.13: A partial tree of a sentence that depicts a situation in which
the application of Rule 5 is possible (before on the left, and after the applic-
ation on the right).

Rule 6 (Reduction, representation only). For any two child with same in-
coming edge type, remove the duplicate edge.
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Rule 7 (Reduction). Remove tags of type punct, mark, ‘’ (empty space),
meta.

Rule 8 (Reduction). Transform specific edge types of child nodes into a
more general version. More specifically, transform all obj-like relations into
obj, all subj-like relations into subj, and all mod-like relations into mod.

Rule 6 is the first one we describe of the Reduction type, and together
with Rules 7 and 8 serve a main purpose of simplifying the tree represent-
ation for grouping and analysis purposes. Rule 6 removes duplicates only
in the representation and causes the analysis of a node with two prep child
nodes to be the same as a node with only one.

Rule 9 (Reduction). Merge all obj-like relations into one single obj node,
and all subj-like relations into one subj node.

To describe Rules 8 and 12, it is important to note the definition of
mod-like relations, as per the following:

e mod-like relations: Noun Phrase Adverbial Modifier (npadvmod), Ad-
jectival Modifier (amod), Adverbial Modifier (advmod), Numeric Mod-
ifier (nummod), Quantifier Modifier (quantmod), Relative Clause Mod-
ifier (remod), Temporal Modifier (¢mod), Reduced Non-finite Verbal
Modifier (vmod) [31].

Rule 10 (Subj and 0bj, representation only). For any two child with same
incoming edge type, remove the duplicate edge.

Rule 11 (Subj and Obj). Remove tags of type det and ‘’ (empty space).

Rule 12 (Subj and Obj). Transform specific edge types of child nodes into a
more general version. More specifically, transform all obj-like relations into
obj, all subj-like relations into subj, and all mod-like relations into mod.

Rules 10, 11, 12 behave similarly to the Reduction rules, but at the
Subj, Obj level - these rules intend to facilitate grouping and analysis.

Furthermore, we observed that, in several situations, the subject or
object sentences were too long, mainly due to containing extra information
beyond the subject/object concept definition. With information extraction,
it is reasonable to assume that the tool should return the information as
granular as possible, while still maintaining the possibility for the user to
use extra context if needed. In an attempt to alleviate this situation, Rule
13 was created.

Figure 4.14 shows the modification done by Rule 13 in the sentence
‘It uses the exponential mechanism to recursively bisect each interval into
subintervals’, when searching for the ‘uses’ relation. The relation extrac-
ted in this case has an extra parameter mod: uses ( subj: It ; obj:
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dobj

nsubj mod

recursivelly

mechanism

mechanism

amod det
relcl
’ exponential ‘ ’ recursivelly ‘ \th_d amod

|

Figure 4.14: A partial tree of a sentence that depicts a situation in which
the application of Rule 13 is possible (before on the left, and after the ap-
plication on the right).

Rule # Python method name

O 00 N T W=

—_ =
i)

—
[\)

13

Growth.replace _subj if dep is_relcl or ccomp
Growth.recurse_on_dep conj if no_subj
Growth.transform xcomp to dobj or sub if doesnt exists
Growth.transform prep in_ to_dobj
Growth.add _dobj if dep is subj
Reduction.remove duplicates
Reduction.remove _tags

Reduction.transform tags
Reduction.merge multiple subj or dobj
Obj.remove _duplicates; Subj.remove duplicates
Obj.remove tags; Subj.remove tags

Obj.tranform tags; Subj.tranform tags

Obj.bring grandchild prep or relcl up as_child,;
Subj.bring grandchild prep or relcl up as child

Table 4.1: Rules from this document and the Python method names.
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exponential mechanism ; mod: to recursively bisect each interval
into subintervals ).

Rule 13 (Subj and Obj). Search for the sub-tree rooted by the current node
being analysed (either subj-like or a obj-like) for certain types of nodes and
then split the sub-tree in the following way: the found node is removed from
the current sub-tree, and moved to be a child node (sub-tree) of the node that
represents the relation (the verb). The node that represents the relation is the
head (parent) of the current node being analysed. This rule also renames the
node as per the below:

e relcl, acl, advcl with any token: split and rename to mod.

e prep with tokens ‘by’, ‘to’, ‘for’, ‘with’, ‘whereby’: split and rename to
prep.

In the HTML output, the tool presents the Python method name of the
rules applied to a given sentence. Table 4.1 presents the relation between the
rules in this document, and their Python method names.

Finally, after continuous revision, some rules were adjusted to, by omis-
sion, also cater for a certain number of cases such as:

e Appositional modifier: once an apposition is found attached to a sub-
ject through an appos edge, this will be output in the output as part of
the relation.

e Punctuation: it is in general also added to the output given, in this
corpus, an excess of situations where square brackets or symbols are
used to point to extra information around a concept, such as in a refer-
ences.






Chapter 5

Results

This section describes the experiments and comparisons done of this tool
with similar existing ones. To prepare for the experiment, we modified the
HTML output to:

e Include the output of three other similar tools: Stanford OpenlE [4],
Max Planck Institute ClauselE [15], AllenAI OpenlE [17].

e Modified the program to be able to generate a CSV output so evalu-
ation is possible through normal spreadsheet software.

5.1 Experiments

We used SpaCy to segment sentences containing selected words and input
the relevant sentences through each system. The output was then evaluated
by human in the following way below. Note that there were no points added
for the optional parts of a relation.

e If subj and obj are correct, the extractor gets 10 points.
o If subj or obj are correct, but not both, the extractor gets 5 points.

e [f none subj and obj are correct, the extractor gets 0 points.

Evaluations were done by 2 human specialists. Both Figures 5.1 and
5.2 shows the evaluation done by evaluator 1, and promising results from our
tool. In the ‘provides’ relation our tool had the best results for this evalu-
ator. These figures are based on the counts form Tables 5.1 and 5.2.

For the ‘provides’ relation there is data available from 2 different evalu-
ators. In this case, it is possible to calculate the Kappa measures for the res-
ults of the tools, which provides more insights on how the evaluators agree
to each other. Tables 5.3, 5.4, 5.5, and 5.6 show the agreement of the eval-
uators across the tools in the format of a confusion matrix. This results in

51
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"Enables" relation, average points, 47 relations

9.000000
7.765957

& 000000 7.340426
6.914894

7.000000

5.000000

4.000000

2.872340

3.000000

2.000000

1.000000

Stanford OpenlE Ours ClauslE

Figure 5.1: Results for the ‘enables’ relation.

"Provides" relation, average points, 57 relations

9.000000

4000000 7.719298
7.105263

7.982456

Stanford Clausele OpenlE Ours

Figure 5.2: Results for the ‘provides’ relation.

Incorrect Partial Correct
Ours 0 23 34
Stanford 25 7 25
OpenlE 4 18 35
ClauselE 5 23 29

Table 5.1: Evaluation count from evaluator 1 for the ‘provides’ relation.
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Incorrect Partial Correct
Ours 0 25 22
Stanford 28 11 8
OpenlE 4 21 22
ClauselE 1 19 27

Table 5.2: Evaluation count from evaluator 1 for the ‘enables’ relation.

Kappa measures of 41.27% for our tool, 73.49% for the Stanford OpenlE
tool, 36.81% for the AllenAI OpenlE tool, and 48.89% for Max Planck In-
stitute ClauselE tool.

We believe that these low agreement measures show how difficult it is
to standardize the expert evaluation of the understand of what is correctness
in Open Information Extraction. Even in this constrained domain (papers
from the database area), with experts in this area doing the evaluation, dif-
ferent opinions on what would be the correct extraction emerge, causing dif-
ferences in the evaluation. The higher agreement number for the Stanford
OpenlE extractor comes from the high number of completely incorrect res-
ults yielded by the tool.

Another room for disagreement comes from the fact that, while our
tool yields only one result, all other Open Information Extraction tools yield
multiple relations. Evaluators might then pick different results as the correct
one, given the various options in output relations.

Evaluator 1

Incorrect | Partial | Correct | Total
Incorrect 0 6 0 6
Evaluator 2 -5 e 0 5 6 11
Correct 0 12 28 40
Total 0 23 34 57

Table 5.3: Comparison between evaluators for the results of our tool, based
on the ‘provides’ relation.

Evaluator 1

Incorrect | Partial | Correct | Total
Incorrect 25 2 1 28
Evaluator 2= e 0 5 9 14
Correct 0 0 15 15
Total 25 7 25 57

Table 5.4: Comparison between evaluators for the results of Stanford
OpenlE tool, based on the ‘provides’ relation.
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Incorrect | Partial | Correct
Incorrect 2 2 0
Partial 0 4 11
Correct 1 12 24
Total 4 18 35

Total
5
15
37
57

Table 5.5: Comparison between evaluators for the results of AllenAl
OpenlE tool, based on the ‘provides’ relation.

Evaluator 2

Evaluator 1

Incorrect | Partial | Correct
Incorrect 5 4 0
Partial 0 4 3
Correct 1 15 26
Total 5 23 29

Total
9
7
41
57

Table 5.6: Comparison between evaluators for the results of Max Planck
Institute ClauselE tool, based on the ‘provides’ relation.

5.2 Cases Analysis

This section presents some comparisons of outputs from our tool and Clau-

selE.

Given the sentence ‘Crowdsourcing provides a new problem-solving paradigm

[3], [21], which has been blended into several research communities, includ-
ing database and data mining.’, our tool extracts the relation provides (

subj:

Crowdsourcing ; obj:
with the optional parameter ( dep:

a new problem-solving paradigm [ 3 )
, which has been blended
into several research communities , including database and data
mining ). While Stanford OpenlE extracts no results, and ClauselE fails

to extract any ‘provides’ relation, AllenAl OpenlE extracts the relation but
with a very long 0bj that contains the entire sentence starting from ‘a new
problem-...". This was a situation where the evaluators considered the results
of our tool correct, while all others were at most partially correct.

[ 21]

Another similar situation is depicted in Figure 5.3, which is the actual
output of our tool. Note the extracted values at the top, in comparison to
the other tools. In this instance the evaluators observed that the Stanford
OpenlE tool also yielded a correct result.

An important point is how reliable our tool is on the correctness of the
dependency tree. Figure 5.4 shows a situation where SpaCy mislabels the
Part-of-Speech tag of the word ‘set’ in sentence ‘more advantages over a lin-
ear result set that are not highlighted in these evaluations’ as a verb instead
of a noun (as it talks about a ‘result set’). Because of this error, Rule 13 is
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provides (subj: Section 5 ; obj: detailed comparison )
( prep: with our algorithm )

Sentence: Secrion 5 provides a detailed comparison with our algorithm.

Rules appplied were: Reduction.remove_tags, Obj.remove_tags, Obj.bring_grandchild_prep_or_relcl_up_as_child

Stanford 1.0 Section 5 provides comparison

OpenIT 1.0 Section 5 provides detailed comparison
1.0 Section 5 provides comparison with our algorithm
1.0 Section provides detailed comparison
1.0 Section provides comparison with our algorithm
1.0 Section provides comparison

AllenAI  Section 5

OpenlE

provides a detailed comparison with our algorithm.
MPI 2 "our"” "has" "algorithm"
ClauselE

Figure 5.3: In this example again, our tool is successful in extract the res-
ult.

triggered, causing an incorrect extraction (Figure 5.5).

provides ( subj: our approach ; obj: more advantages over a linear result )
( mod: that are not highlighted in these evaluations )
(mod: set)
(mod: However )

Sentence: However, our approach provides more advantages aver a linear result set that are not highlighted in these evaluations.

Rules appplied were: Reduction.remove_tags, Obj.bring_grandchild_prep_or_relcl_up_as_child

Stanford
OpenIT

AllenAl  However, our approach provides more advantages over a linear result set that are not highlighted in these evaluations.
OpenlE  0.64 (our approach; provides; more advantages; over a linear result set)
0.91 (a linear result set; are not highlighted; L:in these evaluations)

MPI 1 "our" "has" "approach”
ClauseIE 1 "our approach" "provides

"o

more advantages However"

1 "our approach” "provides" "more advantages over a linear result set"
1 "our approach” "provides" "more advantages"”

1 "a linear result set" "are not highlighted" "in these evaluations”

"o

"o

Figure 5.4: In this example, the dependency tree returned by SpaCy is in-
correct and the rules from our tool cause an incorrect output to be returned.

ClauselE and AllenAI OpenlE results also retain a notion of negation,
while our tool fails to do so. Note that in Figure 5.6 the example shows this
behaviour from the output of our tool. Note how in Figure 5.7 the depend-
ency tree contains information regarding the negation, however we have no
rules that can use this information.

The full output of the comparison between the tools contains further
examples and nuances, showing the complexity of the problem.
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However approach advantages
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A |
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result
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relcl
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det
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However, our approach provides more advantages over a linear result set that are not highlighted in these evaluations.

Figure 5.5: SpaCy’s dependency tree. Since ‘set’ is wrongly believed to
be a verb in this case, it then receives an acl dependency label on the edge,
triggering Rule 13. This graph was created by Graphviz also as part of the

output of our tool.
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provides (subj: SciBORQ ; obj: guarantees on the error margins )
(neg: not )
( prep: for results )
( aux: does )

Sentence: In contrast to BlinkDB, SciBORQ does not support error constraints, and does not provides
guarantees on the error margins for results.

Rules appplied were: Growth.recurse_on_dep_conj_if no_subj

Stanford
OpenIT

AllenAl  In contrast to BlinkDB, SciBORQ does not support error constraints, and does not provides
OpenlE  guarantees on the error margins for results.

0.92 (SciBORQ); does not support; error constraints)

0.91 (SciBORQ); does not provides; guarantees on the error margins for results)

MPI 1 "SciBORQ" "does not support" "error constraints In contrast to BlinkDB"
ClauselE 1 "SciBORQ" "does not support" "error constraints"”
1 "SciBORQ" "does not provides" "guarantees In contrast to BlinkDB"
1 "SciBORQ" "does not provides" "guarantees on the error margins for results”
1 "SciBORQ" "does not provides" "guarantees”

Figure 5.6: In this case our tool removes all notions of negation, again
yielding an incorrect output.

support

dn%p-
»
| not Ilconslraims ‘ In ‘ does

ompound  pobj
error contrast ‘guarantees ‘ not l ‘ does ‘ for ‘ | |
prep prep pobj
‘ to ‘ ‘ on ‘ results
pobj pobj

margins

BlinkDB

In contrast to BlinkDB, SciBORQ does not support error constraints, and does not provides guarantees on the error margins for results.

Figure 5.7: SpaCy’s dependency tree correctly provides the negative rela-
tions, but our rules fail to use them. This graph was created by Graphviz
also as part of the output of our tool.
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5.3 Observed Limits

We observed that in some cases there are limits on the decision process done
by this tool, where the linguistic syntactical information from the text might
not be enough, or further semantic knowledge might be needed. Note, for an
example, the sentence ‘SemTag uses the TAP knowledge base5 , and employs
the cosine similarity with TEF-IDF weighting scheme to compute the match
degree between a mention and an entity, achieving an accuracy of around
82%’. As a result it has the following main structure, mainly due to Rule 13:

e obj: ‘SemTag’
e sub: ‘cosine similarity’

e prep: ‘with TF-IDF weighting scheme, achieving an accuracy of around

82%’

In this domain, ‘cosine similarity with TF-IDF weighting scheme’ would
represent a single concept instead, since it is a specific type of ‘cosine simil-
arity’, contrary to what was the output of the rule. One then observes that,
for improved correctness Rule 13 should rely on more information and apply
reasoning in order to break the sub-tree more appropriately.

Moreover, it was also possible to note the incapacity of the rules to be
applied together, or chained, as to output the correct answers. Note, for
an example, the sentence ‘LSD is an extensible framework, which employs
several schema-based matchers’. A new rule could be developed and named
Rule A, which processes the ‘s’ relation and follows the attr edge as to get
the definition for the proper noun ‘LSD’ in this case (Figure 5.8). At this
moment, this rule would then yield the relation is ( LSD ; an extensible
framework ). Suppose now the ‘employs’ relation is the one actually be-
ing searched for. Observing the dependency tree, one could see that Rule
1 would be triggered and cause the head node to be moved and replace the
existing nsubj child node, yielding employs ( extensible framework ;
several schema-based matchers ). At this point, the ability to chain both
these rules would yield a more complete relation employs ( LSD ; several
schema-based matchers ) since the system would already know what ‘LSD’
actually is. In addition, another challenge would be how to have the tool be-
ing capable of this decision: when to chain rules, or when knowing that the
current result is already optimal.

Another observation comes from the simplicity of the Extraction class.
In certain situations, multiple relations could have been extracted instead of
one. The first case can be seen in sentence ‘As PAS analysis widely employs
global and sentence-wide features, it is computationally expensive to integ-
rate’ which in the current tool yields the relation employs ( PAS analysis
; global and sentence-wide features ). A more advanced Extraction
rule could attempt to yield two relations instead:
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amod

employs

nsubj dobj

’ which ‘ ’ schema-based ‘

Figure 5.8: A sentence that could benefit from rule chaining.

e employs ( PAS analysis ; global features ); and
e employs ( PAS analysis ; sentence-wide features ).

The challenge then sits on deciding when to yield multiple sentences,
and what are the tokens that compose them. Note that, in this case, we
made the non-trivial decision to repeat the token ‘features’ in both relations.

The second case being, as previously mentioned, regarding the appos
edge, or appositional modifier. This appears in situations such as in the
sentence ‘A similar technique, LightLDA, employs cycle-based Metropolis
Hastings mizing’. While our tool yields one relation employs ( similar
technique LightLDA ; cycle-based Metropolis Hastings mixing ), a
more advanced Extraction rule could attempt to yield two relations instead:

e employs ( similar technique ; cycle-based Metropolis Hastings
mixing ); and

e employs ( LightLDA ; cycle-based Metropolis Hastings mixing
).

Another class of errors observed was when the 0bj contains an inter-
mediate token like ‘us’. Note, for an example, the sentence ‘Modeling the
positions of moving objects as functions of time not only enables us to make
tentative future predictions’. While the expected extraction is enables (
Modeling the positions of moving objects as functions of time ;
us to make tentative future predictions ), the system outputs enables
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( Modeling the positions of moving objects as functions of time ;
us ). This could be resolved by further rules that act on the obj replacing
the token ‘us’ with the content of the zcomp relation where the content of
the expected 0bj normally is in these cases and then manipulating the tree
accordingly.

Sentence complexity also plays a part in causing errors. Note this sen-
tence: ‘Doing so enables SECOA to securely answer not only all aggregates
in [11] without any false positives or false negatives, but also many other ag-
gregates (such as Maz, Top- k , Frequent Items, Popular Items) that proof
sketches cannot deal with at all.’. The facts are posed in a format where the
sentence structure is more complex (... not only X ... but also Y'), and there
are no rules capable of extracting the information in this format. The ex-
traction is then the follow incomplete fact enables ( Doing so ; SECOA
).

In several other situations, we tracked the error to be due to the de-
pendency tree being incorrect from SpaCy, which was reported as a bug in
the project’s github page !. In another category of errors, the problem is due
to the data quality problem - the source data (i.e., sentence) is incorrect.
This is either due to errors early on in the PDF-to-text extraction process,
or issues in SpaCy’s segmentation step.

"https://github.com/explosion/spaCy/issues/480


https://github.com/explosion/spaCy/issues/480

Chapter 6

Conclusion and Future Work

The maturity and fast-pacing on current development of NLP algorithms
and frameworks is very positive and provides advanced linguistic information
for tackling problems such as information extraction. We observed that the
developed tool was reasonably successful, but as the previous section notes
that are room for future work on improving the details of its operation.

The addition of semantic information for reasoning in certain rules ap-
plication would certainly improve the ability of the system to better decide
what to do in certain situations, it is unclear however at this point how this
would be done. The entities that are part of the relations would benefit from
a good disambiguation system and the development of canonical representa-
tions of them.

Extra meta-data from the papers, and the entirety of the paper itself,
could start being considered. With this one could attempt to answers ques-
tions such as:

e Research relations through time. You could have, e.g., certain histor-
ical insights into which algorithm was more popular for a certain task
during certain periods;

e Explore coreference resolution more deeply, not only within a paper
but across papers and the references between them;

e Events, or introductions of new algorithms or concepts in certain years
and how it changes further outputs;

e Building and using a database of the extracted concepts and the rela-
tions between them (Knowledge Graph).

Moreover, as future work, one could address the issues described here in

Sections 5.2 and 5.3 by strengthening the rules for the remaining cases the
tool is currently failing. Another issue observed often is the need for a more
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refined intra-sentence distance evaluation by, for an example, using Stan-
ford’s Coreference Resolution output to resolve pronouns into the actual con-
cepts or entities for a more complete relation output.
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