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Preface

Companion to https://github.com/nschorgh/MSIM/

Cite source code or the description of methods as:

N. Schörghofer. Mars Subsurface Ice Model (MSIM) Program Collection, 2022. GitHub.
doi:10.5281/zenodo.6499708 https://github.com/nschorgh/MSIM/

The most recent release is usually behind the most recent version available on GitHub, but
releases have DOIs that can be cited.
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Part 1

1D Thermal Model for Mars
1-Dimensional Numerical Model of Thermal Conduction and Surface Energy Balance

The heat flow in the shallow subsurface is described by the heat equation:

ρc
∂T

∂t
=

∂

∂z

(
k
∂T

∂z

)
(1.1)

where T (z, t) is temperature, t time, z depth, ρc the volumetric heat capacity, and k thermal

conductivity. The (negative of the) heat flux is F = k
∂T

∂z
. Boundary conditions are specified

below.

1.1 Semi-Implicit Scheme on Irregular Grid

Authors & History: originally implemented by Samar Khatiwala in 2001 (including upper
radiation boundary condition for semi-implicit scheme); extended to variable thermal prop-
erties and irregular grid by Norbert Schörghofer 2002–2003; added predictor-corrector step
in 2019. The content of this section can also be found in Schörghofer and Khatiwala (2024).

Consider grid points at depths z1, . . . , zN in a direction normal to the surface, with z1
the first point below the surface. A flux-conservative discretization on an irregularly-spaced
grid is given by

∂

∂z
Fj =

Fj+ 1
2
− Fj− 1

2

(zj+1 − zj−1)/2
= 2

kj+ 1
2

Tj+1−Tj

zj+1−zj
− kj− 1

2

Tj−Tj−1

zj−zj−1

zj+1 − zj−1

Subscript j refers to position zj. The spatial discretization of the heat equation (1.1) then
becomes

(ρc)j
∂Tj

∂t
=

2kj+ 1
2

(zj+1 − zj)(zj+1 − zj−1)
Tj+1 −

2

zj+1 − zj−1

(
kj+ 1

2

zj+1 − zj
+

kj− 1
2

zj − zj−1

)
Tj +

+
2kj− 1

2

(zj − zj−1)(zj+1 − zj−1)
Tj−1
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Introduce the coefficients

αj =
∆t

(ρc)j

kj+ 1
2

(zj+1 − zj)(zj+1 − zj−1)
and γj =

∆t

(ρc)j

kj− 1
2

(zj − zj−1)(zj+1 − zj−1)
(1.2)

The discretized system of equations then becomes

∆t
∂Tj

∂t
= 2αjTj+1 − 2(αj + γj)Tj + 2γjTj−1

A semi-implicit time discretization of (1.1) is of the form (Crank and Nicolson, 1947; Press
et al., 1992)

(ρc)j
T n+1
j − T n

j

∆t
=

1

2

(
∂

∂z
F n+1
j +

∂

∂z
F n
j

)
where superscript n refers to the time step. Hence,

T n+1
j − T n

j = αjT
n+1
j+1 − (αj + γj)T

n+1
j + γjT

n+1
j−1 + αjT

n
j+1 − (αj + γj)T

n
j + γjT

n
j−1

which leads to the system of equations

−αjT
n+1
j+1 + (1 + αj + γj)T

n+1
j − γjT

n+1
j−1 = αjT

n
j+1 + (1− αj − γj)T

n
j + γjT

n
j−1 1 < j < N

(1.3)
This tridiagonal linear system can be solved in O(N) steps.

Whereas the temperature Tj is defined on grid point zj, the conductivity k is defined
in between points. In the equations above, (ρc)j is defined on zj, but in the program
implementations, 2(ρc)j = (ρc)j+ 1

2
+ (ρc)j− 1

2
. In this way, the thermal properties k and ρc

are defined on the same points. (In the case of an interface between two layers with greatly
different thermal properties, a grid point can be placed on the interface whereas the thermal
properties do not need to be defined on the interface.) Since array indices must be integers,
we choose k[j]= kj− 1

2
, and the same for ρc.

Although the derivation was made with time-constant thermal parameters k and ρc, it
remains applicable if these parameters change slowly with time.

1.1.1 Upper boundary condition: prescribed T

Take as boundary condition a prescribed surface temperature Ts = T (0, t). The general
formulas (1.2) and (1.3) with T0 = Ts and z0 = 0 yield

α1 =
∆t

(ρc)1

k3/2
(z2 − z1)z2

and γ1 =
∆t

(ρc)1

k1/2
z1z2

−α1T
n+1
2 + (1 + α1 + γ1)T

n+1
1 = α1T

n
2 + (1− α1 − γ1)T

n
1 + γ1(T

n
s + T n+1

s ) (1.4)

which is implemented in conductionT.f90. This is a standard Crank-Nicolson solver for an
irregular spaced grid.
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1.1.2 Upper boundary condition: Stefan-Boltzmann radiation law

The surface energy balance on an airless body is given by

Q+ k
∂T

∂z

∣∣∣∣∣
z=0

= ϵσT 4
∣∣∣
z=0

(1.5)

Q(t) is the absorbed solar flux. On the right-hand side, ϵ is the (infrared) emissivity of the
surface and σ is the Stefan-Boltzmann constant. To use an implicit method, the nonlinear
boundary condition needs to be linearized.

Introduce the auxiliary quantity T0, such that the surface temperature Ts = (T0 + T1)/2.
On the surface,

∂T

∂z

∣∣∣∣∣
z=0

=
T1 − T0

∆z
and T 4

∣∣∣
z=0

=
(
T0 + T1

2

)4

with ∆z = 2z1

The temperature is linearized around a reference temperature Tr, T = Tr + T ′. Equation
(1.5) becomes

Q+ k1/2
T1 − T0

∆z
= ϵσ

(
2Tr + T ′

0 + T ′
1

2

)4

≈ ϵσT 4
r + 2ϵσT 3

r (T
′
0 + T ′

1) = −3ϵσT 4
r + 2ϵσT 3

r (T0 + T1)

This results in the following expression for T0:

T0

(
k1/2
∆z

+B(Tr)

)
= Q+ 3ϵσT 4

r + T1

(
k1/2
∆z

−B(Tr)

)
where B(Tr) = 2ϵσT 3

r

Introduce a = (Q+ 3ϵσT 4
r ) /

(
k1/2
∆z

+B
)
and b =

(
k1/2
∆z

−B
)
/
(
k1/2
∆z

+B
)
. The relation for

j = 1 in (1.3) becomes

−α1T
n+1
2 +(1+α1+γ1−γ1b

n+1)T n+1
1 = α1T

n
2 +(1−α1−γ1+γ1b

n)T n
1 +γ1(a

n+an+1) (1.6)

Define β = ∆t
(ρc)1

1
2∆z2

, then α1 = βk3/2 and γ1 = βk1/2. The surface temperature is computed
as

Ts =
1

2
(T0 + T1) =

1

2
(a+ bT1 + T1)

As reference temperature choose Tr = T n
s . The semi-implicit solver with this boundary

condition is implemented in conductionQ.f90.
Considering that the flux is evaluated in between grid points, it is natural to impose the

surface energy balance half-way from the shallowest grid point. The first few grid points
must be chosen as z0 = 0 and z2 = 3z1 (in other words z1 = ∆z/2, z2 = z1 + ∆z). The
coefficients for the nonlinear upper boundary condition are designed for that. Subroutine
setgrid can be used to generate a suitable grid. (No restrictions are placed on z3 and
beyond. A geometrically increasing spacing is a natural choice, because the temperature
amplitude decays exponentially with depth.)
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The above linearization of the Stefan-Boltzmann law, σT 4, works well as long as the
surface temperature changes slowly, such as for Mars orbit and a horizontal surface. A
temporary instability, where the surface temperature overshoots, can occur when a sloped,
shadowed surface suddenly emerges into sunlight. In this case the energy input changes
abruptly.

Above, the thermal emission is linearized around the reference temperature Tr = T n
s . If

T n+1
s is far from T n

s , a significant error was incurred in the evaluation of the emitted energy.
This can be addressed by repeating the calculation with a new reference temperature Tr

somewhere in between T n
s and T n+1

s . An empirical choice is the geometric mean of the
previous reference temperature and the new surface temperature. This predictor-corrector
step is iteratively applied until Tr is within 20% of T n+1

s .
Another approach is “artificial flux smoothing” where the time step is subdivided into

many substeps, using linear interpolation of the incoming flux from Qn to Qn+1. It turns a
discontinuous change in Q into a continuous change.

See Schörghofer and Khatiwala (2024) for a list of stabilization methods.

1.1.3 Lower boundary condition

At the lower boundary of the domain, a known value is imposed on the heat flux.
As fluxes are defined in between grid point, the lower flux boundary condition is best

applied there as well:

FN+ 1
2
= kN+ 1

2

TN+1 − TN

zN+1 − zN
= Fgeothermal

The condition amounts to

TN+1 = TN + Fgeothermal
zN+1 − zN

kN+ 1
2

Assume the position of the hypothetical next grid point is set by zN+1 − zN = zN − zN−1

and kN+ 1
2
= kN− 1

2
. In the system (1.3) the equation for j = N becomes

(1 + γN)T
n+1
N − γNT

n+1
N−1 = (1− γN)T

n
N + γNT

n
N−1 +

∆t

(ρc)N

Fgeothermal

zN − zN−1

(1.7)

with

γN =
∆t

(ρc)N

kN− 1
2

2(zN − zN−1)2
(1.8)

Alternatively, when the lower boundary condition is imposed at zN :

kN+ 1
2
+ kN− 1

2

2

TN+1 − TN−1

zN+1 − zN−1

= Fgeothermal

The condition amounts to

TN+1 = TN−1 + 2Fgeothermal
zN − zN−1

kN− 1
2
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In the system (1.3) the equation for j = N becomes

(1 + 2γN)T
n+1
N − 2γNT

n+1
N−1 = (1− 2γN)T

n
N + 2γNT

n
N−1 +

2∆t

(ρc)N

Fgeothermal

zN − zN−1

(1.9)

with the same γN as in (1.8).

1.1.4 Validations

The following tests were performed for these solvers:
a) For a sinusoidally varying surface temperature, the solution to the heat equation is

known analytically:

T = Tm + Tae
−z/δ sin

(
z

δ
− 2πt

P

)
(1.10)

where

δ =
Γ

ρc

√
P

π
(1.11)

is the thermal skin depth, Γ the thermal inertia, and P the period. This expression can be
used to validate conductionT for uniform thermal properties (Figure 1.1). The heat flux is
given by

F = −k
∂T

∂z
= −

√
2 k

Ta

δ
e−z/δ cos

(
z

δ
− 2πt

P
+

π

4

)
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Figure 1.1: Comparison of numerical with analytical solution for Crank-Nicolson solver with
periodic surface boundary condition. The deviations at the bottom are justified because the
analytical solution (1.10) is for an infinitely deep domain. Non-equidistant grid points were
used in this example.
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b) Convergence of some solutions with ∆t and ∆z has been verified. For example,
Figure 1.2 demonstrates that the error decreases proportionally to ∆t2, as expected for a
semi-implicit scheme. (An explicit or fully implicit scheme would only converge with ∆t to
the first power.)

10-4 10-3 10-2 10-1

10-4

10-3

10-2

10-1

100

101

102

∆t (sol)

E
rr

o
r 
(K

)

Numerical, 1-Norm

Numerical, max-Norm

∝ (∆t)2

∝ ∆t

Figure 1.2: Convergence with time step ∆t for the Crank-Nicolson method with nonlinear
boundary condition. Errors are evaluated as ||T∆t(z, t) − T∆t/2(z, t)||, where the subscript
indicates the time step. The rate of convergence is second order. The black lines have slopes
1 and 2, respectively, and arbitrary prefactors.

c) For periodic solutions (with boundary condition 1.1.1 or 1.1.2) the heat flux F =
−k∂T/∂z, time-averaged over one period, must be the same at all depths and equal to the
heat flux imposed at the bottom boundary. Consider the time average of eq. (1.1) over one
period. After the solution has equilibrated (has become periodic) and as long as the heat
capacity does not vary with time, the time average of F must be constant with depth, even
if the thermal properties vary with depth. Figure 1.3 shows a flux conservation test.

d) A short-term solution for the heat equation with Stefan-Boltzmann radiation sur-
face boundary condition was derived by Handelsman and Olmstead (1972). Their non-
dimensional equations are Tt = Tzz, Tz(0, t) = T n(0, t)−f(t), T (z, 0) = 0, limz→∞ T (z, t) = 0.
In our case n = 4 and f(t) = T 4

e , where Te is an ambient temperature. In this case, their
solution is T (0, t) = 2√

π
T 4
e

√
t, for small t. After re-dimensionalizing, the surface temperature

is found to change as

T (0, t) = T0 +
2√
π

ϵσ

Γ

(
T 4
e − T 4

0

)√
t for small t ≥ 0 (1.12)

where T0 = T (0, 0) is the initial surface temperature. Figure 1.4 shows that the numerical
solver reproduces the expected behavior for this discontinuous change in incoming flux.
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Figure 1.3: Validation of the conservation of the heat flux (flux-conservative discretization).
The ice table at 10 cm depth causes dramatic changes in thermal properties. Left panel:
Minimum and maximum subsurface temperatures over one Mars year. Middle panel: Tem-
peratures averaged over one Mars year, which change linearly as the thermal conductivity is
constant within each of the two layers. Right panel: Heat flux averaged over one Mars year,
which is preserved across changes in thermal properties and equals to the heat flux imposed
at the bottom boundary of 0.028 W/m2.
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Figure 1.4: Response of numerical solution to a sudden change in incoming flux compared
to the analytically obtained expansion for small times, eq. (1.12).
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1.2 Other Model Components

1.2.1 Seasonal frost cover

On Mars, atmospheric CO2 can condense (desublimate) seasonally. The surface energy
balance with the latent heat of CO2 sublimation added is

Q+ k
∂T

∂z

∣∣∣∣∣
z=0

= ϵσT 4
∣∣∣
z=0

− L
dmCO2

dt
with mCO2 ≥ 0 (1.13)

where L is the specific latent heat and mCO2 is the areal density of CO2 ice. Time integration
has to switch between boundary conditions (1.1.1) and (1.1.2). Call conductionQ if the
surface temperature Ts is above the CO2 frost point temperature or if mCO2 = 0. Call
conductionT if Ts is below the CO2 frost point or if mCO2 > 0. In the latter case, calculate
the energy difference and update mCO2 . Adjust the surface albedo and infrared emissivity.
Repeat this at every time step. An implementation of the 1D thermal model for Mars is
provided by mars thermal1d.f.

Modeled surface temperatures have been compared to TES (Thermal Emission Spec-
trometer) surface temperatures.

The Mars thermal model was used in Schorghofer and Aharonson (2005) and many
subsequent papers, including Schorghofer (2008).

1.2.2 Thermal properties of the ground

See Winter and Saari (1969) for heat capacity of silicates as a function of temperature.
Notably, many silicates have about the same specific heat capacity. See Handbook of Chem-
istry and Physics (Lide, 2003) for the temperature dependence of ice. At around 200 Kelvin:
cice ≈ 1540 J/(kg K), ρice ≈ 927 kg/m3, kice ≈ 3.2 W/(m K), which results in a thermal
inertia of 2137 Jm−2K−1s−1/2. The thermal conductivity of granular media varies by four
orders of magnitudes on planetary surfaces, primarily due to the dependence on grain size.

Influence of ice on thermal properties: Ice can greatly change the thermal properties of
porous ground. The following is one possible parametrization. In retrospective, it agrees
well with the laboratory measurements by Siegler et al. (2012) for vapor-deposited ice.

ρc = (1− ϵ)ρregolithcregolith + ϵfρicecice

k = (1− ϵ)kregolith + ϵfkice + (1− f)ϵkair

where ρ is density, c heat capacity, k thermal conductivity, ϵ porosity (void space / total
volume), and f the ice filling fraction (between 0 and 1, but it can be larger than 1 for excess
ice).

In the program, k and ρc are defined halfway between grid points, whereas f and T are
defined on grid points.

The thermal inertia of ice-cemented soil is not drastically different from pure ice, which
lends some justification to calculating an equilibrium ice table agnostic to the lithic content
of the ice.
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1.2.3 Incidence angle and orbit

The elevation β of the sun above an horizontal horizon is given in terms of geographic latitude
λ, declination δ of the sun, and the hour angle h by

sin β = cosλ cos δ cosh+ sinλ sin δ. (1.14)

Equations for the ephemerides of present-day Mars are implented in marsorbit.f90. For
past orbital elements, generalorbit.f can be used, which solves Kepler’s equation with the
Newton method.

1.2.4 Mars atmospheric extinction and sky irradiance

The absorbed direct solar irradiance is approximately

Qsolar =
S0

R2
(1− A)(1− f)1/max(sinβ,0.04) sin β, (1.15)

where S0 is the solar constant, R the distance from the sun in AU, A the albedo, and f
due to the extinction in the atmosphere. The length of the path through the atmosphere
is approximately proportional to 1/ sin β and the transmission is taken to be exponential in
this path length. The nadir optical depth of the atmosphere is − ln(1 − f) ≈ f . For small
extinction and away from the horizon, (1−f)1/ sinβ ≈ 1−f/ sin β. The maximum atmospheric

path length ℓmax is limited due to the curvature of the planet, H/ℓmax ≈
√
H/2R ≈ 0.04,

where H is the scale height of the atmosphere and R the radius of the planet.
In addition to the direct insolation, the diffuse irradiance from the sky contributes to

the surface energy balance (sky irradiance). Atmospheric emission is approximated by a
fraction fIR (typically 2–4%) of noontime insolation and is kept constant throughout a solar
day (Kieffer et al., 1977):

Qatm,IR = fIR
S0

R2
sin βnoon (all day) (1.16)

This approximation fails during polar winter; in this case, Kieffer et al. (1977) replaces the
noontime insolation with the surface frost emission.

In addition, there is scattered light when sin β > 0, which is approximated by

Qatm,scat =
1

2
fscat

S0

R2
. (1.17)

Half of the scattered light is assumed to be lost to space.
The total absorbed flux is

Q = Qsolar + (1− A)Qatm,scat + ϵQatm,IR

For the purpose of discussion, we determine the total energy budget of the atmosphere for a
horizontal land mass. To first order (1− f)1/ sinβ sinβ ≈ sinβ− f , in eq. (1.15), so at any time the
sun is above the horizon the energy absorbed and scattered in the atmosphere is approximately
(S0/R

2)f . Over a solar day
S0

R2
f

∫
daytime

dh ≈ S0

R2
πf. (1.18)
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The infrared emission from the atmosphere over the same time period is

2πfIR
S0

R2
sinβnoon (1.19)

and the scattered energy

πfscat
S0

R2
. (1.20)

The globally averaged sinβnoon is

1

π

∫ π/2

−π/2
dλ cosλ sinβnoon ≈ 1

π

∫ π/2

−π/2
dλ cos2 λ =

1

2
(1.21)

Global balance, (1.18)=(1.19)+(1.20), is achieved with f = fIR+ fscat. This relation does not hold
at an individual latitude, but it does hold globally.

1.3 Surface Energy Balance for Planar Slope on Mars

Planar slopes are much simpler than the general 3D problem. This section describes a model
for the thermal balance on a tilted plane in the form of two coupled 1D thermal models plus
a quasi-0D atmosphere. The model is for Mars, but easily simplified to airless bodies. It
was used in Aharonson and Schorghofer (2006) and Schorghofer and Edgett (2006).

History: developed 2002–2005

1.3.1 Direct solar irradiance on slope

The elevation β of the sun above a horizontal horizon is given by (1.14). The angle θ of the
sun above a sloped surface is

sin θ = cosα sin β − sinα cos β cos(∆a) (1.22)

where α is the slope angle and ∆a is the difference between the azimuth of the sun and the
azimuth of the topographic gradient. The sun is assumed to be below the horizon if either
sin β < 0 (horizontal horizon at infinity) or sin θ < 0 (self shadowing of slope).

On an airless body the direct insolation is

Qdirect =
S0

R2
sin θ (1.23)

where S0 is the solar constant and R the distance from the sun in AU.
For Mars, the direct solar insolation is

Qdirect =
S0

R2
(1− f)1/max(sinβ,0.04) sin θ (1.24)

where f arises from the extinction in the atmosphere. This is a generalization of eq. (1.15)
in subsection 1.2.4, where this approximate expression is further justified.
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1.3.2 Terrain and sky irradiance for planar slope

Let α denote the slope angle. The heat balance on the surface is given by (1.13) with

Q = (1− A)[Qdirect(α) +Qatm,scat(α) +Qland,vis(α)] + ϵ[Qatm,IR(α) +Qland,IR(α)] (1.25)

Q is the absorbed irradiance from the sun, atmosphere, and surfaces within field of view.
Figure 1.5 illustrates the contributions.

Qsolar
Qatm

Qland

ϵσT 4

conduction

T

T1

Figure 1.5: Contributions to the energy balance on a slope with surface temperature T .

Terrain irradiance: The surface reemits radiation in all directions, but receives additional
energy from surfaces in its field of view (terrain irradiance). This emission is weighted
according to the incidence angle ι (Greek letter iota) and integrated over the spherical angle
Ω subtended by the visible land surfaces. If we consider a horizontal surface at uniform
temperature T1 (Kreslavsky and Head, 2005):

Qland,IR = ϵ1σT
4
1

∫
cos ι dΩ = sin2

(
α

2

)
ϵ1σT

4
1 (1.26)

If one assumes T1 = T and ϵ1 = ϵ, then this term can be brought to the right-hand side of
eq. (1.13), leading to an effective emissivity of ϵ cos2(α/2). However, this is often not a good
approximation, as demonstrated in Aharonson and Schorghofer (2006), Fig. 2b. It is more
accurate to base T1 on a separate 1D model for a flat unobstructed surface.

The terrain irradiance also has a short-wavelength component, usually much smaller
than the long-wavelength (infrared) component. It uses the same geometric factor. The
short-wavelength terrain irradiance onto a planar slope is

Qland,vis = sin2
(
α

2

)
A1Qdirect,1 (1.27)

where subscript 1 denotes quantities on the flat surface.
Sky irradiance for planar slope. The diffuse irradiance from the sky adds a small amount

of energy to the surface. In the spirit of the Kieffer approximation (subsection 1.2.4),

Qatm,IR =
S0

R2
FskyfIR sin βnoon (all day) (1.28)

and if the sun is up, then

Qatm,scat =
S0

2R2
Fskyfscat when sin β > 0 (1.29)
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otherwise Qatm,scat = 0.
More than one definition of (sky) view factor Fsky and various approximations for the sky

irradiance are used in the literature; see Flo Heggem et al. (2001) and Rakovec and Zakšek
(2012). For isotropic (Lambertian) irradiance from the sky, the diffuse irradiance from the
atmosphere is weighed by the cosine of the incidence angle. For a planar slope this results
in Fsky = cos2(α/2). Spiga and Forget (2008) have derived a more detailed parameterization
for Qatm,scat on a planar slope on Mars.

For a 3D horizon, the sky view factor can be calculated from horizon elevations. The
detailed expression is given in the User Guide of the Planetary-Code-Collection, section 2.5
(“Diffuse sky irradiance in the presence of horizons”).
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Part 2

Diffusion of Water Vapor with Phase
Transitions
1-Dimensional Diffusion of Water Vapor in Porous Medium with Phase Transitions;
variable diffusivity; irregular grid
3 phases: vapor, free (macroscopic) H2O ice, H2O adsorbate
implemented in vapordiffusioni.f

History: developed 2003–2004

2.1 Governing Equations

indices: v ... gas (vapor), f ... free ice (solid), a ... adsorbed water
ρ̄ ... mass per total volume, J̄ ... vapor flux per total area

conservation of mass:
∂

∂t
(ρ̄v + ρ̄f + ρ̄a) +∇ · J̄ = 0 (2.1)

vapor transport: (Landau and Lifshitz, 1987, Vol. VI, §57, §58)

J = −Dρ0∇c (2.2)

c ... concentration c = ρv/ρ0
ρ0 ... total density of air, including water vapor
ρv ... density of vapor

pv = nkT = ρv
k

mv

T (2.3)

mv ... mass of water molecule; k ... Boltzmann constant

ϵ ... porosity (= void space / total volume)
ϵ(1− ρf/ρice) ... fraction of space available to gas
ρ̄v = ρvϵ(1− ρf/ρice) ρv ... vapor density in void space
ρ̄f = ρfϵ ρf ... ice density in volume not occupied by regolith
J̄ = Jϵ(1− ρf/ρice) J ... vapor flux through void area
ρice ≈ 926 kg/m3 ... density of ice when it’s really cold
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adsorption: ρ̄a = A(p, T ) reversible and not kinetically-limited

Conservation of mass becomes

∂

∂t

(
ρv

(
1− ρf

ρice

)
+ ρf +

1

ϵ
ρ̄a

)
+ ∂z

(
1− ρf

ρice

)
J = 0

∂

∂t

[
ρv

(
1− ρf

ρice

)
+ ρf +

1

ϵ
ρ̄a

]
= ∂z

[(
1− ρf

ρice

)
D∂zρv

]

introduce φ = 1− ρf
ρice

and γ =
k

m

1

ϵ

∂t

(
p

T
φ+

k

mv

ρf

)
+ γ

(
∂ρ̄a
∂p

∂tp+
∂ρ̄a
∂T

∂tT

)
= ∂z

[
Dφ

(
∂z

p

T

)]
(2.4)

This is an equation for p or ρf , depending on whether ice is present or not. If ice is present,
p is determined by the saturation (frost point) temperature. If there is no ice, then(

1

T
+ γ

∂ρ̄a
∂p

)
∂tp+

(
− p

T 2
+ γ

∂ρ̄a
∂T

)
∂tT = ∂z

(
D∂z

p

T

)

2.2 Discretizations

2.2.1 Possible discretizations of spatial derivatives

Note: These spatial discretizations are not necessarily optimal in terms of discretization
error.

∂z(a∂zb)|j =
1

∆z2

(
aj+1/2(bj+1 − bj)− aj−1/2(bj − bj−1)

)
+O(∆z2) (2.5)

or

∂z(a∂zb)|j =
1

2∆z2
((aj+1 + aj)(bj+1 − bj)− (aj + aj−1)(bj − bj−1)) +O(∆z2) (2.6)

or

∂z(a∂zb)|j = a∂zzb+ (∂za)∂zb

=
1

∆z2

[
aj(bj+1 − 2bj + bj−1) +

1

4
(aj+1 − aj−1)(bj+1 − bj−1)

]
+O(∆z2)(2.7)

The most general discretization which is accurate to O(∆z2), rather than just O(∆z), is
of the following form

∂z(a∂zb)|j =
1

∆z2
(cajbj + (−1− c

2
)aj−1bj + (−1− c

2
)aj+1bj

− c

2
ajbj−1 +

3 + c

4
aj−1bj−1 +

1 + c

4
aj+1bj−1

− c

2
ajbj+1 +

1 + c

4
aj−1bj+1 +

3 + c

4
aj+1bj+1) +O(∆z2) (2.8)
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Choices (2.6) and (2.7) above correspond to c = −1 and c = −2, respectively.

Another set of schemes does not involve the cross-terms aj+1bj−1 and aj−1bj+1. They are
of the following form

∂z(a∂zb)|j =
1

∆z2
(−ajbj − caj−1bj + (−1 + c)aj+1bj +

(1− c)ajbj−1 + caj−1bj−1 + cajbj+1 + (1− c)aj+1bj+1) +(
c− 1

2

)
O(∆z) +O(∆z2) (2.9)

=
1

∆z2
[(1− c)aj+1(bj+1 − bj) + caj−1(bj−1 − bj) +

+aj(cbj+1 − bj + (1− c)bj−1)] +O(∆z)

For c = 1/2 this reduces to scheme (2.6) above
If starting with complete pore filling, c > 0 is required for downward motion of ice table.

On irregular grid: General scheme without cross-terms

∂z(a∂zb)|j = −2c+ (1− 2c)h+/h−

h−h+

ajbj +
−1 + (1− 2c)h+/h−

h−(h− + h+)
aj−1bj +

2c− 2

h+(h− + h+)
aj+1bj +

+
1 + (1− 2c)h+/h−

h−(h− + h+)
ajbj−1 +

1 + (2c− 1)h+/h−

h−(h− + h+)
aj−1bj−1 +

2c

h+(h− + h+)
ajbj+1

+
2− 2c

h+(h− + h+)
aj+1bj+1 +O(h+ + h−) (2.10)

where h+ = zj+1 − zj and h− = zj − zj−1. For h+ = h− = h this reduces to (2.9)

2.2.2 Discretization of time derivative

use eq. (2.4), A ≡ f

pn+1
j

T n+1
j

φn+1
j −

pnj
T n
j

φn
j +

k

µ

(
ρf

n+1
j − ρf

n
j

)
+ γ

∂f

∂p

∣∣∣∣∣
n

j

(pn+1
j − pnj )+

+γ
∂f

∂T

∣∣∣∣∣
n

j

(T n+1
j − T n

j ) = ∆t
(
∂zDφ∂z

p

T

)n

j
(2.11)

derivatives of the isotherm are not expanded to keep it linear

2.2.3 Complete scheme

using (2.11) and (2.10)

ξn+1
j =

pnj
T n
j

φn
j +

k

µ
ρf

n
j + γ

∂f

∂p

∣∣∣∣∣
n

j

pnj − γ
∂f

∂T

∣∣∣∣∣
n

j

(T n+1
j − T n

j ) +

∆t

∆z2

[
Djφ

n
j

(
pnj+1

T n
j+1

− 2
pnj
T n
j

+
pnj−1

T n
j−1

)
+

1

4
(Dj+1φ

n
j+1 −Dj−1φ

n
j−1)

(
pnj+1

T n
j+1

−
pnj−1

T n
j−1

)]
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where ξn+1 =
pn+1

T n+1

(
1−

ρn+1
f

ρice

)
+

k

µ
ρf

n+1 + γ
∂f

∂p

∣∣∣∣∣
n

pn+1

p ≤ psv(T ) and 0 ≤ ρf ≤ ρice

-

6

pn+1

ρf
n+1

b
b
b
b
b
b
b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
b
b
b
b
b
b
bb

no ice

psv(T
n+1)

uu
u

ξn+1 =const., almost linear

psv ... saturation vapor pressure

Try ρn+1
f = 0 ⇒ pn+1 =

T n+1 · ξn+1

1 + T n+1γ ∂f
∂p

∣∣∣n and ρn+1
f = 0

If pn+1 > psv(T
n+1) then pn+1 = psv(T

n+1) and

ρn+1
f =

ξn+1 − psv(Tn+1)
Tn+1 − γ ∂f

∂p

∣∣∣n psv(T n+1)

k
µ
− psv(Tn+1)

Tn+1ρice

introduce pn+1
frost = psv(T

n+1)

2.2.4 Upper boundary condition

1) p(z = 0, t) = patm.(t)
2) D(z = 0) = D0

3) φ0 = 1

∂z

(
Dφ∂z

p

T

)∣∣∣∣
j=0

=
1

∆z2

[
D1φ1

(
p2
T2

− 2
p1
T1

+
patm
Tsurf

)
+

1

4
(D2φ2 −D0φ0)

(
p2
T2

− patm
Tsurf

)]
(2.12)

for half-shifted grid (z2 = 3z1):

a∂zzb+ (∂za)∂zb =
1

∆z2

[
a1

(
8

3
bs − 4b1 +

4

3
b2

)
+
(
−4

3
as + a1 +

1

3
a2

)(
−4

3
bs + b1 +

1

3
b2

)]
(2.13)

2.2.5 Lower boundary condition

no vapor flux (impermeable) J = 0 ⇒ ∂zρv = 0 ⇒ ∂z
p

T
= 0 ⇒ pN+1

TN+1

=
pN−1

TN−1

∂z

(
Dφ∂z

p

T

)∣∣∣∣
j=N

=
1

∆z2
2DNφN

(
pN−1

TN−1

− pN
TN

)
(2.14)
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2.3 Discussion

For 1D diffusion and advection with multiple gases, the governing equations are more com-
plex, but the numerical implementation is not. For the governing equations in non-isothermal
environments see works such as Cunningham and Williams (1980); Bouziani and Fanale
(1998); Hudson et al. (2007).

Water vapor diffusion calculations for Mars are carried out in Schorghofer and Aharonson
(2005).
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Part 3

Long-Term Ice Evolution: Equilibrium
and Non-equilibrium Ice Tables
Long-term evolution of sub-surface ice due to vapor exchange with the atmosphere using
diurnally- and seasonally-resolved temperatures.

History:
2002–2004 equilibrium ice table on Mars
2006–2011 asynchronous model for ice on Mars

3.1 Equilibrium Ice Table on Mars

The equilibrium depth to the ice table is defined by a balance between the vapor pressure
at the ice table and the atmosphere (Fig. 3.1). It is the end result of atmosphere-subsurface
vapor exchange after an asymptotically long time. If no equilibrium is possible, then subsur-
face ice is “unstable”. Using the thermal model described in Part 1, this model calculates
the equilibrium depth based on matching the vapor density at the ice table with that in
the atmosphere. The thermal model is run over a number of Mars years to equilibrate, and
annual means are calculated for the last orbit. The ice content of the subsurface changes the
thermal properties, and the thermal model is repeatedly equilibrated.

Figure 3.2 shows the result of thermal model calculations (using the methods described

Ice or

ice-rich ground

Soil

Atmosphere
Water Vapor

Figure 3.1: Subsurface ice exchanges water vapor
with the atmosphere through a layer of porous
soil. Temperature oscillations decay with depth,
as illustrated by a set of instantaneous tempera-
ture profiles.
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in Part 1) and vapor diffusion calculations (using the methods described in Part 2). The
gradient in temperature abruptly changes at the ice table due to the change in thermal
properties (Fig. 3.2a). The annual mean of the vapor density profile can be determined
from the annual mean of the vapor density on the surface and at the ice table (Fig. 3.2c).
The time-averaging can be justified mathematically by swapping the time integral with the
gradient in Fick’s diffusion law. These boundary values can be calculated without solving
the vapor diffusion equation, which provides a major computational advantage.
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Figure 3.2: Temperature, partial pressure of H2O, and annual mean vapor density ⟨ρv⟩ when
the ice table is above equilibrium (and therefore retreats). In this conceptional example, a
sinusoidal surface temperature dependence is assumed. The vapor density profiles vary with
time, but the annual mean of ρv simply increases linearly with depth. The dotted line is
based on the boundary values of the mean annual vapor density and closely approximates
the annual mean from the microphysical vapor diffusion calculations.

The equilibrium ice table calculations determine at what depth the annual mean vapor
density at the ice table matches that on the surface. Because the ice content changes the
thermal properties, multiple thermal model runs need to be carried out to arrive at the
equilibrium depth. A root-finding procedure is deployed to find the equilibrium depth. In
mars mapi.f the root-finding procedure is a bisection method. The more recent but simpler
program mars mapii.f90 instead iteratively updates the instantaneous equilibrium depth
to arrive at the unique final equilibrium depth. Then mars mapt.f can be used to output
additional variables for a given ice table depth.

The model was extensively used in Schorghofer and Aharonson (2005), where further
description is available. With extensions described in section 1.3.2 for planar slopes, it also
forms the core of the model used in Aharonson and Schorghofer (2006).

3.2 Asynchronous Model for Near-Surface Ice on Mars

The model couples a diurnally-resolved thermal model with a long-term ice evolution model.
Ice (massive or interstitial) can be lost to the atmosphere and, vice-versa, pore spaces can
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Table 3.1: Programs that calculate the equilibrium ice table on Mars.
Main program Task
mars mapt temperatures for prescribed ice table depth
mars mapi finds equilibrium ice table with bisection method
mars mapii finds equilibrium ice table with iteration method
mars mapi2p finds equilibrium ice table for planar slopes with bisection method

be recharged with interstitial ice. In difference to the model for the equilibrium ice table
(section 3.1), this dynamical model calculates changes in ice volume and the interstitial
spaces may only be partially filled with ice.

Schorghofer (2010) provides a description of this rather complex model, which is not
repeated here. In brief, the time-averaged vapor transport equations are solved, which avoids
having to solve the microphysical vapor transport equations. The numerical method involves
a one-sided derivative at the moving ice table, otherwise a numerical instability occurs due
to the strong contrast in thermal properties at the ice table. The model allows for up to
three layers: ice-free, soil with interstitial ice (plus void spaces), and massive ice with dust.
In the current implementation, one of the two interfaces is tracked explicitly. The model is
extensively used in Schorghofer (2007) and Schorghofer and Forget (2012) for studies of the
Martian ice age cycle.

Table 3.2: Overview of current implementations of asynchronous dynamic models for Mars
Main program Task
mars fast ice evolution on Mars (massive and interstitial ice)
exper fast ice evolution in lab experiment
stabgrow fast growth of pore ice
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