
Unboxing your
VirtualBoxes

A close look at a desktop hypervisor

Niklas Baumstark

WHOIS

● Security researcher and “student”

● Pwn2Own ’17 & ‘18 (VirtualBox in ‘18)

● CTF player & orga with KITCTF and Eat Sleep Pwn Repeat

● N-day write-ups and exploits at phoenhex.re

● Contact: @_niklasb on Twitter

Part of this project was sponsored by

the SSD program at beyondsecurity.com/ssd

Why look at VirtualBox?

● People run shady software inside VMs, but attack surface is large:
○ VMware Workstation has complete 3D & printer emulation by default (!)

○ VirtualBox brings OpenGL network library from 2001 (!)

● Hyper-V + VMware have had quite some scrutiny

● Hyper-V + VMware are closed source, hard to RE

● Exploit mitigations are still lacking

● Who wouldn’t want to write their exploits as kernel drivers?

Agenda

1. VirtualBox architecture & privilege boundaries

2. The curious case of process hardening

3. Guest addition & Vagrant hacks

4. Guest-to-host attack surface & exploit

VirtualBox Architecture &
Privilege Boundaries

VirtualBox Architecture

Host Guest

ring 3

ring 0

VirtualBox.exe
VBoxSVC.exe

ring 0

ring 3

VBoxDrv.sys

VBoxGuest.sys

Device drivers

HGCM
HGSMI

PCI
MMIO
VGA
...

VBoxControl.exe

VBoxService.exe

VBoxClient.exe

VirtualBox Architecture

Host Guest

ring 3

ring 0

VirtualBox.exe
VBoxSVC.exe

ring 0

ring 3

VBoxDrv.sys

VBoxGuest.sys

Device drivers

HGCM
HGSMI

PCI
MMIO
VGA
...

VBoxControl.exe

VBoxService.exe

VBoxClient.exe

HGCM = Host-Guest Communication Manager
HGSMI = Host-Guest Shared Memory Interface

VirtualBox Architecture

Host Guest

ring 3

ring 0

VirtualBox.exe
VBoxSVC.exe

ring 0

ring 3

VBoxDrv.sys

VBoxGuest.sys

Device drivers

HGCM
HGSMI

PCI
MMIO
VGA
...

VBoxControl.exe

VBoxService.exe

VBoxClient.exe

Interface protected by process hardening

The Curious Case of
Process Hardening

Why process hardening?

● Every host VM process needs access to VBoxDrv functionality
○ Hardware virtualization

○ Memory management

○ Access to host hardware

○ …

● Boundary is weak
○ Classic memory corruption issues [1]

○ Data structures with pointers shared between ring 3 & ring 0

○ Dangerous APIs (more later)

[1] https://bugs.chromium.org/p/project-zero/issues/detail?id=1091

Why process hardening?

● Every host VM process needs access to VBoxDrv functionality
○ Hardware virtualization

○ Memory management

○ Access to host devices

○ …

● Boundary is weak
○ Classic memory corruption issues [1]

○ Data structures with pointers shared between ring 3 & ring 0

○ Dangerous APIs (more later)

[1] https://bugs.chromium.org/p/project-zero/issues/detail?id=1091

Why process hardening?

● Every host VM process needs access to VBoxDrv functionality
○ Hardware virtualization

○ Memory management

○ Access to host devices

○ …

● Boundary is weak
○ Classic memory corruption issues [1]

○ Data structures with pointers shared between ring 3 & ring 0

○ Dangerous APIs (more later)

[1] https://bugs.chromium.org/p/project-zero/issues/detail?id=1091

How does it work?

● VM processes run as the user that started the VM

● On Linux + macOS, /dev/vboxdrv can only be opened as root
○ setuid bit is used to open device, then privileges are dropped

○ Mitigates ptrace and other simple means of code injection

How does it work?

● VM processes run as the user that started the VM

● On Linux + macOS, /dev/vboxdrv can only be opened as root
○ setuid bit is used to open device, then privileges are dropped

○ Mitigates ptrace and other simple means of code injection

● On Windows, host processes and VBoxDrv protect themselves
○ Prevent remote memory read/write + thread creation

○ Prevent loading of unsigned DLLs

○ Very good overview by James Forshaw [2]

[2] https://googleprojectzero.blogspot.de/2017/08/bypassing-virtualbox-process-hardening.html

How can we break it?

● Code injection attacks
○ QT_QPA_PLATFORM_PLUGIN_PATH – CVE-2017-3561

○ ALSA config – CVE-2017-3576

● Bypasses for the Windows implementation
○ CVE-2017-{3563, 10204, 10129}

● File parsing?

● (XP)COM programming interface?

● “Weird” VM escapes

● ...

How can we break it?

● Code injection attacks
○ QT_QPA_PLATFORM_PLUGIN_PATH – CVE-2017-3561 [3]

○ ALSA config – CVE-2017-3576 [3]

● Bypasses for the Windows implementation
○ CVE-2017-{3563, 10204, 10129}

● File parsing?

● (XP)COM programming interface?

● “Weird” VM escapes

● ...

How can we break it?

● Code injection attacks
○ QT_QPA_PLATFORM_PLUGIN_PATH – CVE-2017-3561 [3]

○ ALSA config – CVE-2017-3576 [3]

● Bypasses for the Windows implementation
○ CVE-2017-{3563, 10204, 10129}

● File parsing?

● (XP)COM programming interface?

● VM escapes

● ...

CVE-2018-2694

CVE-2018-2694

● Vulnerability in a COM handler to set auto-login credentials

● strcpy() into fixed-length heap buffer in 2018…
○ Mitigated by MSVC

○ Mitigated by GCC with _FORTIFY_SOURCE

○ But not in the macOS build?

● Buffer is allocated at startup, so we have to get a bit lucky

● PoC:

VBoxManage controlvm poc setcredentials \

$(perl -e 'print "A"x1264 . "BBBBBB"') C D

CVE-2018-2694

VBoxManage controlvm poc setcredentials \

$(perl -e 'print "A"x1264 . "BBBBBB"') C D

Primitive:

pSomeObj = 0x424242424242;

pSomeObj->someFunctionPointer(pSomeObj, ...);

CVE-2018-2694: Code Execution

● ASLR is not an issue, since library base addresses are shared

● Just place a pointer to a longjmp gadget there

● For controlled data, allocate a few hundred MB inside the VM
○ Will reliably end up at 0x130101010 in the VM process (thanks to Apple)

ez ROP

Privilege Escalation

● We now have access to VBoxDrv
○ SUP_IOCTL_LDR_LOAD is used to load kernel “plugins”

○ It takes a raw data buffer containing a kext/driver….

● On macOS, just take a real VirtualBox module and patch entry point

● On Windows, driver signature is checked
○ We can call into a kernel plugin via SUP_IOCTL_CALL_SERVICE

○ 4th argument is fully controlled => jmp r9 sounds good

○ For SMEP bypass, other ioctls let us map kernel WX memory

● Early versions did not even check signatures
○ DSEFix tool exploits this to bypass driver signing on Windows

Guest Additions & Vagrant

Where are we?

Host Guest

ring 3

ring 0

VirtualBox.exe
VBoxSVC.exe

ring 0

ring 3

VBoxDrv.sys

VBoxGuest.sys

Device drivers

HGCM
HGSMI

PCI
MMIO
VGA
...

VBoxControl.exe

VBoxService.exe

VBoxClient.exe

Why Guest Additions?

● Many features require guest cooperation
○ Mouse pointer integration

○ Shared folders

○ Clipboard sharing / Drag & Drop

○ 3D acceleration (= shared OpenGL)

○ Page fusion / ballooning

● Most of these are implemented using the HGCM protocol

● Everything goes through VBoxGuest kernel component

CVE-2018-2693

● VBoxGuest driver exposed via device node

● Exposed ioctls were essentially the same for both

⇨ Everyone can access all HGCM services, including shared folders

● Privesc: For root-mounted shared folder, create setuid binary

● Privesc: For auto-mounted shared folder: Change location of

mount, e.g. to /lib64 or /etc/pam.d

● DoS: Release an essential memory region for ballooning

The real deal:
Guest-to-host escapes

Where are we?

Host Guest

ring 3

ring 0

VirtualBox.exe
VBoxSVC.exe

ring 0

ring 3

VBoxDrv.sys

VBoxGuest.sys

Device drivers

HGCM
HGSMI

PCI
MMIO
VGA
...

VBoxControl.exe

VBoxService.exe

VBoxClient.exe

Guest-to-host attack surface

● Think of the hypervisor as a server, and guest as a client

● We manipulate hypervisor state by talking to emulated devices
○ VMM: Implements HGCM and other VirtualBox-specific interfaces

○ Graphics: VGA device

○ Audio: Intel HD Audio device (Windows guest) / AC’97 (Linux guest)

○ Networking: E1000 network card / virtio-net, NAT layer

○ Storage: AHCI / PIIX4 controller

○ Other: ACPI controller, USB, ...

Examples

● 2014–2018: Multiple vulnerabilities in shared OpenGL (3D accel)

● CVE-2017-3538: Path traversal via race in shared folders

● CVE-2017-3558: Heap buffer overflow in NAT library

● CVE-2017-3575: Heap out-of-bounds write in virtio-net

● CVE-2017-10235: Buffer overflow in E1000 network controller

● CVE-2018-2698: 2x arbitrary read/write in VGA device

CVE-2018-2698

● HGSMI (Host-Guest Shared Memory Interface)

is another way to issue commands from guest to host

● Guest allocates request buffer in video RAM, notifies VGA device

● Used for VBVA subsystem (VirtualBox Video Acceleration)

● VBVA_VDMA_CMD is used for video DMA commands:
○ VBOXVDMACMD_TYPE_DMA_PRESENT_BLT

○ VBOXVDMACMD_TYPE_DMA_BPB_TRANSFER

CVE-2018-2698

CVE-2018-2698

memcpy(VRAM + A, VRAM + B, C)

Exploiting a relative read/write

● Primitives:
○ read(VRAM + X, size)

○ write(VRAM + X, data)

● But we don’t know where VRAM is mapped in the host process

● Let’s place some interesting stuff at a predictable offset from it
○ Heap spray?

○ Pure luck?

Exploiting a relative read/write

● Primitives:
○ read(VRAM + X, size)

○ write(VRAM + X, data)

● But we don’t know where VRAM is mapped in the host process

● Let’s place some interesting stuff at a predictable offset from it
○ Heap spray?

○ Pure luck?

Sounds good, let’s do that

Debug session with
VRAM location = 0xc5d0000
VRAM size = 0x8000000 bytes (128 MB)

This applies to Windows hosts only!

Pointer to VRAM

Pointer into VBoxDD.dll

Pointer to device context

The cheap trick

● Using region descriptor we can
○ Turn relative into absolute read/write

○ Defeat ASLR (by leaking VBoxDD.dll base)

○ Leak the location of the device object

● Now, chase some pointers
○ Leak kernel32.dll base

○ Find and “enhance” a data structure containing function pointers

● Final strike via VBVA_INFO_CAPS to pivot into ROP chain

The cheap trick

● Using region descriptor we can
○ Turn relative into absolute read/write

○ Defeat ASLR (by leaking VBoxDD.dll base)

○ Leak the location of an important heap data structure

● Now, chase some pointers
○ Leak kernel32.dll base

○ Find a data structure containing function pointers

● Final strike via VBVA_INFO_CAPS to pivot into ROP chain

Demo time!

SharedFoldersEnableSymlinksCreate

● When playing around with shared folders, I found:

● Exploitable as unprivileged user via /dev/vboxuser

● This only works if a flag is set, which Vagrant does by default

umount /vagrant
rmmod vboxsf
modprobe vboxsf follow_symlinks=1
ln -s /etc/passwd /vagrant/x
mount -t vboxsf vagrant /vagrant
cat /vagrant/x

http://download.virtualbox.org/virtualbox/UserManual.pdf, page 71

SharedFoldersEnableSymlinksCreate

Wrap-up

● VirtualBox has a rather readable codebase, security response is

mostly positive and swift

● VMware has no monopoly on cool vulnerabilities

● There are unexpected and fun privilege boundaries beside the

obvious guest/host

● Hardening advice:
○ Think twice before installing VirtualBox on a multi-user system

○ Disable unnecessary features, especially 3D/video acceleration

○ Use a secure guest OS, most bugs are only exploitable from kernel mode

○ Add VAGRANT_DISABLE_VBOXSYMLINKSCREATE=1 to your .bashrc

Thank you!

Time for questions :)

