
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Boosting GPU Virtualization Performance with
Hybrid Shadow Page Tables

Yaozu Dong and Mochi Xue, Shanghai Jiao Tong University and Intel Corporation;
Xiao Zheng, Intel Corporation; Jiajun Wang, Shanghai Jiao Tong University and Intel

Corporation; Zhengwei Qi and Haibing Guan, Shanghai Jiao Tong University

https://www.usenix.org/conference/atc15/technical-session/presentation/dong

USENIX Association 	 2015 USENIX Annual Technical Conference  517

Boosting GPU Virtualization Performance with Hybrid Shadow Page Tables

Yaozu Dong1, 2, Mochi Xue1,2, Xiao Zheng2, Jiajun Wang1,2, Zhengwei Qi1, Haibing Guan1

{eddie.dong, xiao.zheng}@intel.com {xuemochi, jiajunwang, qizhenwei, hbguan}@sjtu.edu.cn
1Shanghai Jiao Tong University, 2Intel Corporation

Abstract

The increasing adoption of Graphic Process Unit (GPU)

to computation-intensive workloads has stimulated a new

computing paradigm called GPU cloud (e.g., Amazon’s

GPU Cloud), which necessitates the sharing of GPU re-

sources to multiple tenants in a cloud. However, state-of-

the-art GPU virtualization techniques such as gVirt still

suffer from non-trivial performance overhead for graph-

ics memory-intensive workloads involving frequent page

table updates.

To understand such overhead, this paper first presents

GMedia, a media benchmark, and uses it to analyze the

causes of such overhead. Our analysis shows that fre-

quent updates to guest VM’s page tables causes excessive

updates to the shadow page table in the hypervisor, due to

the need to guarantee the consistency between guest page

table and shadow page table. To this end, this paper pro-

poses gHyvi1, an optimized GPU virtualization scheme

based on gVirt, which uses adaptive hybrid page table

shadowing that combines strict and relaxed page table

schemes. By significantly reducing trap-and-emulation

due to page table updates, gHyvi significantly improves

gVirt’s performance for memory-intensive GPU work-

loads. Evaluation using GMedia shows that gHyvi can

achieve up to 13x performance improvement compared

to gVirt, and up to 85% native performance for multi-

thread media transcoding.

1 Introduction

The emergence of HPC cloud [30] has shifted many

computation-intensive workloads such as machine learn-

ing [24], molecular dynamics simulations [31] and me-

dia transcoding to cloud environments. This necessi-

tates the use of GPU to boost the performance of such

computation-hungry applications, resulting in a new

1The source code of gHyvi will be available at https://01.org/

igvt-g.

computing paradigm called GPU cloud (such as Ama-

zon’s GPU cloud [2]). Hence, it is now vitally important

to provide efficient GPU virtualization to provision elas-

tic GPU resources to multiple users.

To address this challenge, two recent full GPU virtual-

ization techniques, gVirt [29] and GPUvm [28], are pro-

posed respectively. gVirt is the first open-source product-

level full GPU virtualization approach based on Xen hy-

pervisor [11] for Intel GPUs, while GPUvm provides

a Graphic Process Unit (GPU) virtualization approach

on the NVIDIA card. This paper mainly focuses on

gVirt due to its open-source availability. Specifically,

gVirt presents a vGPU instance to each VM to run na-

tive graphics driver, which achieves high performance

and good scalability for GPU-intensive workloads.

While gVirt has made an important first step to provide

full GPU virtualization, our measurement shows that it

still incurs non-trivial overhead for media transcoding

workloads. Specifically, we build GMedia using Intel’s

MSDK (Media Software Development Kit) to charac-

terize the performance of gVirt. Our analysis uncovers

that gVirt still suffers from non-trivial performance slow-

down due to an issue called Massive Update Issue. This

is caused by frequent updates on guest page tables, which

lead to excessive VM-exits to the hypervisor to synchro-

nize the shadow page table with the guest page table.

To address the Massive Update Issue, this paper intro-

duces gHyvi, which provides a hybrid page table shad-

owing scheme to provide optimized full GPU virtual-

ization based on Xen hypervisor for Intel GPUs. In-

spired by the GPU programming model, we introduce a

new asynchronous mechanism, namely relaxed page ta-

ble shadowing, which removes trap-and-emulation and

thus reduces the overhead of massive page table’s mod-

ifications. To minimize the overhead of making guest

and shadow page tables consistent, we combine the two

mechanisms into a adaptive hybrid page table shadow-

ing scheme, which take advantage of both the traditional

strict and the new relaxed page table shadowing. When

1

518  2015 USENIX Annual Technical Conference	 USENIX Association

there are infrequent page table accesses, gHyvi works in

strict page table shadowing; once the gHyvi detects the

guest VM is frequently updating the page table, it will

switch to the relaxed page table shadowing.

One critical issue of using the relaxed page table shad-

owing scheme is to reconstruct the shadow pages when

shadow pages are inconsistent with guest pages. To bet-

ter understand the tradeoff of different reconstruction

policies, we implement and evaluate four page table re-

construction policies: full reconstruction, static partial

reconstruction, dynamic partial reconstruction and dy-

namic segmented partial reconstruction. Our analysis

shows that the last one usually has better performance

than the others, which is thus used as the default policy

for gHyvi.

We have implemented gHyvi based on gVirt, which

comprises 600 LoCs. Experiments using GMedia on

an Intel GPU card show that gHyvi can achieve up to

13x performance improvement compared to gVirt, and

up to 85% native performance for multi-thread media

transcoding. Our analysis shows that gHyvi wins due

to the reduction of up to 69% VM-exits.

In summary, this paper makes the following contribu-

tions:

• A GPU-enabled benchmark for media transcoding

performance (GMedia), by invoking functions from

Intel MSDK to evaluate and collect the performance

data on Intel’s GPU platforms.

• A relaxed page table shadowing mechanism as well

as a hybrid shadow page table scheme, which com-

bines the strict page table shadowing with the re-

laxed page table shadowing.

• Four reconstruction policies: the full reconstruc-

tion policy, static partial reconstruction policy, dy-

namic partial reconstruction policy, and the dy-

namic segmented partial reconstruction policy for

relaxed page table shadowing mechanism.

• An evaluation showing that gHyvi achieves up to

85% native performance for multi-thread media

transcoding and a 13x speedup over gVirt.

The rest of the paper is organized as follows: Sec-

tion 2 describes some background information on gVirt

and GPU programming model. Section 3 presents our

benchmark for media transcoding and discusses the Mas-

sive Update Issue in detail, followed by the design and

implementation of gHyvi In section 4. Then, section 5

evaluates the gHyvi and section 6 discusses the related

work. Finally, section 7 concludes with a brief discus-

sion on future work.

2 Background

2.1 GPU for Computing

CPU

Access
Graphic Memory

System Memory

GPU Page Table

Ring
Buffer

Head

Tail

Render Engine Frame Buffer

Feed
Commands

Fetch
Commands

Access

Access

CMDs

Batch Buffer

Figure 1: GPU Programming Model

GPU programming model: Figure 1 illustrates the

GPU programming model. The graphics driver produces

GPU commands into primary buffer and batch buffer,

which is driven by the high level programming APIs like

OpenGL and DirectX. GPU consumes the commands

and fulfills the acceleration work accordingly. The pri-

mary buffer is a ring structure (ring buffer), which is

designed to deliver the primary commands. Due to the

limited space in the ring buffer, the majority (up to 98%)

of commands are in the batch buffer chained to the ring

buffer.

A register tuple, which includes a head register and

a tail register, is implemented in the ring buffer. CPU

fills commands from tail to head, and GPU fetches com-

mands from head to tail, all within the ring buffer. The

driver notifies GPU the submission and completion of the

commands through the tail, while GPU updates the head.

Once the CPU completes the placement of commands in

the ring buffer and batch buffer, it informs GPU to fetch

the commands. In general, GPU will not fetch the com-

mands placed by the CPU in the ring buffer until the CPU

updates the tail register [29].

GPU Cloud: Due to the massive computing power,

GPU has been expanded from the original graphic com-

puting to general purpose computing. The rising of GPU

cloud, which extends today’s elastic resource manage-

ment capability from CPU to GPU, further enables effi-

cient hosting of GPU workload in cloud and datacenter

environments. The strong demand of hosting GPU ap-

plications calls for GPU clouds that offer full GPU virtu-

alization solutions with good performance, full features

and sharing capability.

2

USENIX Association 	 2015 USENIX Annual Technical Conference  519

2.2 GPU Benchmarks

While there are many GPU benchmarks evaluating the

performance of GPU cards, they mainly focus on graph-

ics ability of cards [1, 8] either for OpenGL or DirectX

commands. Though there are a few benchmarks for gen-

eral purpose computing (GPGPU) such as Rodinia [12]

and Parboil [27], they are not available for Intel’s GPU.

Besides, existing benchmarks neglect the media process-

ing workloads, which is a key to boost the performance

of media applications in cloud.

To this end, this paper presents GMedia, a media

transcoding benchmark shown in Figure 4, based on In-

tel’s MSDK (Media Software Development Kit). Intel’s

MSDK grants media application developers access to

hardware acceleration through a unified API. As a result,

developers can take advantage of the media acceleration

capabilities of future graphics-processing solutions with-

out rewriting the code.

GMedia is a wrapper, which directly invokes the me-

dia functions of Intel’s MSDK to generate common me-

dia transcoding workloads. By modifying the configu-

ration files, we can assign source media file and target

media file’s settings like resolution, bitrate, FPS, etc. Be-

sides, test cases can be run with assigned threads, which

is quite helpful in order to evaluate multi-task perfor-

mance. After running the benchmark, a report will be

provided, which shows the average FPS (frame per sec-

ond) for each thread and total average FPS. The FPS re-

sults intuitively reflect the performance.

3 gVirt and Massive Update Issue

3.1 Intel gVirt

gVirt [29], a product-level full GPU virtualization for In-

tel Graphics, achieves both good performance and scala-

bility. In full GPU virtualization, a virtual machine mon-

itor (VMM) traps and emulates the guest access to the

privilege GPU resources for security and multiplexing,

while passing through access to the performance critical

resources, such as the access of CPU to graphic mem-

ory. For GPU commands, once the CPU submits them,

they will be parsed and audited to ensure the safety. Most

of the GPU commands will be executed in GPU without

VMM intervention, resulting in the nearly native perfor-

mance being achieved.

gVirt applies virtualization to the GPU page tables.

The shared shadow global page table is implemented for

all VMs in order to achieve resource partition and ad-

dress space ballooning. Here, ballooning is the technique

gVirt uses to isolate the address spaces of different VMs

in shared shadow global page table. The shared shadow

global page table is accessible for every VM. However,

ballooned
ballooned

Guest

VM1 global page table VM2 global page table

Host

System memory

shadow global page table

Figure 2: Shared shadow global page table

only part of the shared global page table can be accessed

for one VM to guarantee the isolation, and the balloon-

ing technique hides the rest part of shared shadow page

table from this VM. As shown in Figure 2, each VM con-

tains its own guest global page table to translate from

the graphics memory frame number to the guest mem-

ory frame number. The shared shadow global page table

maintains the translations from graphics memory frame

number to the host memory frame number for all VMs.

Page Directory
Table(PDE) Page Table(PTE)

Shadow Page Directory
Table (PDE)

Shadow Page Table
(PDE)

Guest

Host System
Memory

Figure 3: per-VM shadow local page table

Per-VM shadow local page table is implemented to

achieve pass-through of local graphics memory access.

As shown in Figure 3, the local page tables are with two-

level paging structures, the first level being the Page Di-

rectory Entries (PDEs), which is located in the global

page table. This, in turn, points to the second level Page

Table Entries (PTEs), which is in the system memory.

The generic solution for keeping shadow page table

consistent with guest page table is to write-protect the

shadow page table at all points in time. When a write-

protection page fault happens, VMM can potentially

trap and emulate updates to the guest page table. In

gVirt, shadow page tables are implemented in this strict

page table shadowing, which is a mechanism that syn-

chronously keeps the page table consistent with the cor-

responding guest page table all the time.

3

520  2015 USENIX Annual Technical Conference	 USENIX Association

3.2 Massive Update Issue

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1, 480p

10, 480p

20, 480p

24, 480p

25, 480p

30, 480p

1, 720p

5, 720p

10, 720p

15, 720p

20, 720p

1, 1080p

4, 1080p

5, 1080p

6, 1080p

7, 1080p

10, 1080p

FP
S

Workloads (threads, resolution)

Native
gVirt

Figure 4: GMedia results of Native and gVirt

While gVirt achieves good performance in many

cases, where the guest modifications of page table are in-

frequent, it suffers from poor performance when dealing

with workloads such as media transcoding.

By observing the pattern of guest page table modifi-

cations, we find that the guest VM is frequently swap-

ping graphics memory pages, i.e., dropping the previous

pages or contents and re-construct the contents later on

when needed. Once the guest VM starts to construct

the memory pages, it modifies the entries of page table

contiguously, until the operation is complete. In turn,

this causes a huge amount of page table entry modifica-

tions, and the excessive modifications result in busy trap-

and-emulate, which eventually leads to low FPS media

transcoding with multiple threads. When taking this into

account, it is safe to conclude that the strict shadow page

table shadowing mechanism is the root cause of the per-

formance issue.

To confirm this, we used GMedia to investigate the

media transcoding performance of gVirt under various

workloads. Figure 4 shows the results of media transcod-

ing on our test platform (detailed setting in section 5)

with multiple threads normalized to one thread. We run

30 cases for each resolution to get a full coverage while

selectively presenting the representative cases. For many

cases, the performance discrepancy between gVirt and

native is not obvious. For the 480p media file transcod-

ing, the native machine works fine in each case with

small performance degradation, yet the performance on

DomU (the production VM in Xen) degrades very clearly

with thread multiplies over 20. For high-resolution me-

dia file transcoding, the native machine still works ad-

equately in each case, while DomU’s performance de-

grades with multiple threads, with over 90% in the worst

cases.

Transcoding a media file requires a large amount of

graphic memory in order to read the file in and process

it. Once the memory is limited, Intel’s GPU driver [4] [5]

allocates a new memory page and modifies the page ta-

ble entry to point to the new memory page. In gVirt,

the write-protection page faults of the shadow page ta-

ble happen massively when the thread number becomes

higher or when the video resolution is high, resulting

in the low FPS. Because the guest VM frequently al-

locates new graphic memory from system memory and

massively modifies the page table entries. Therefore, we

define this performance overhead problem caused by fre-

quent page table updates as the Massive Update Issue.

3.3 PTE Update Pattern

To further analyze the Massive Update Issue, we pro-

file 6 media transcoding cases from GMedia: 5-thread

720p, 7-thread 720p, 15-thread 720p, 3-thread 1080p,

4-thread 1080p and 10-thread 1080p, to count the VM-

exits happen during the workload running. We catego-

rize the VM-exit reasons and find that the EPT-violation

dominates in cases with the Massive Update Issue. By

breaking down the EPT-violation we find that the guest

VM frequently modifies the PTE pages when running is-

sued cases. Furthermore, we analyze the PTE updates to

find the pattern of workloads with the Massive Update

Issue, which motivates the design of gHyvi.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5, 720p

7, 720p

15, 720p

3, 1080p

4, 1080p

10, 1080p

C
au

se
 o

f V
M

-e
xi

t (
m

illi
on

)

Workloads (threads, resolution)

EPT_VIOLATION
APIC_ACCESS

PAUSE
I/O_INSTRUCTION

VMCALL
VIRT_INTR

EXTERNAL_INTERRUPT
EXCEPTION_NMI

Figure 5: Break-down of VM-exit

Figure 5 shows the break-down of 6 media transcod-

ing cases’ VM-exits in the duration of 10s. Among these

6 cases, 15-thread 720p and 10-thread 1080p transcod-

ing have much higher rates of Extended Page Tables vi-

olation (EPT-violation), which is caused by a page fault

in the extended page table. As shown in Table 1, the

percentages of EPT-violation are usually under 25% in

other cases but dramatically increase to 62.40% in the

case of 15-thread 720p and 79.45% in the case of 10-

thread 1080p.

4

USENIX Association 	 2015 USENIX Annual Technical Conference  521

EPT-violation

Threads Resolution Percentage

5 720p 24.43%

7 720p 23.06%

15 720p 62.40%

3 1080p 21.43%

4 1080p 23.82%

10 1080p 79.45%

Table 1: EPT-violation percentage in the 6 cases

Interestingly, when a VM guest graphics driver ac-

cesses CPU pages to prepare PTE pages for GPU, it trig-

gers EPT-violation as well. We further provide a break-

down of the EPT-violations. PTE updates trigger 82.97%

and 78.82% of VM-exit caused by EPT-violation for

the cases of 15-thread 720p transcoding and 10-thread

1080p transcoding accordingly. The PTE page updates

excessively expand the percentage of VM-exits caused

by EPT-violation.

 0

 1500

 3000

 4500

 6000

 7500

 9000

 0 64 128 192 256 320 384 448 512

Ac
ce

ss
 F

re
qu

en
cy

PTE Index

PTE Access

Figure 6: PTE update frequency

Furthermore, Figure 6 demonstrates the update fre-

quency on 512 pages within 10s for 15-thread 720p

transcoding case. The pages whose index lie between

150 and 320 are massively modified, and the frequency

can be up to 7.5k times. Each PTE updates trigger the

VM-exit, then the VMM traps and emulates the corre-

sponding writes. However, there are some pages that are

never accessed, like the pages whose index is between

320 and 512. This pattern encourages us to implement

the partial reconstruction policies aside from reconstruct-

ing the whole page table, because part of the page table

may stay unchanged.

We also collected the timestamp and page index to

each PTE update to see the overall pattern. Figure 7

demonstrates all 627k PTE updates occurring within the

10s of 15-thread 720p transcoding case. This pattern is

 0

 128

 256

 384

 512

0 2 4 6 8 10

PT
E

in
de

x

Time

Figure 7: PTE update pattern (in 10s)

in correspondence with Figure 6. Updates on the same

page repeat throughout the entire progress.

 0

 128

 256

 384

 512

 0 0.01 0.02

PT
E

In
de

x

Time

Figure 8: PTE update pattern (in 0.02s)

A small part is split from the 10s to see the detailed

pattern of this case’s PTE updates. Figure 8 demon-

strates the PTE page update pattern in 0.2s, within the

same case. The updates on one PTE page are continuous,

i.e., once a PTE page is modified, there will be following

updates on the same page. This pattern inspires us to re-

move the write-protection of PTE page once the page is

modified for the first time.

4 Design and Implementation

To address the Massive Update Issue for media transcod-

ing workload, this paper describes, gHyvi, a hybrid page

table shadowing scheme for gVirt, as shown in Figure 9.

gHyvi introduces a new page table shadowing mecha-

nism for shadow page tables in gVirt, namely relaxed

page table shadowing, which relaxes the constraints of

write-protection to the guest page table. gHyvi switches

between two different page table shadowing mecha-

nisms, based on the pattern of GPU’s current workload.

5

522  2015 USENIX Annual Technical Conference	 USENIX Association

Host VM

Guest VM
Native

Graphics
Driver

Page Table

Native
Graphics

Driver

Page Table
gVirt

 VMM

GPU

gHyvi
Strict SPT*

Relaxed SPT

Hyper Call TrapPass Through
* SPT = Shadow Page Table

Figure 9: High level architecture of gHyvi

By combining traditional strict page table shadowing and

relaxed page table shadowing mechanism, gHyvi takes

advantage of both. For workloads with the Massive Up-

date Issue like multi-thread media transcoding, gHyvi

could efficiently improve the gVirt’s performance.

4.1 Workflow of gHyvi

First
Update

Massive
Updates

Page
Reconstruction

 *SPT = Shadow Page Table

 Page Table

Strict SPT*

Guest
Host

 Page Table

Strict SPT

Guest
Host

 Page Table

Relaxed SPT

Guest
Host

 Page Table

Relaxed SPT

Guest
Host

Reset
SPT

: Write-protection
: None Write-protection

Figure 10: Workflow of gHyvi

Figure 10 illustrates the basic workflow of gHyvi:

(1) gHyvi initiates the shadow page table which is con-

sistent with the guest page table, and it makes all the

page table write-protected.

(2) If a page table entry is modified by the guest, it trig-

gers page fault which will be trapped into gHyvi.

gHyvi takes a snapshot of this page and removes

the write-protection of this page. The correspond-

ing page table entry of the shadow page table will

be switched into the relaxed shadowing mechanism.

Afterwards, the modifications on the guest page will

not be updated to the shadow page table immedi-

ately.

(3) When the guest VM is scheduled in, the shadow

page table has been already inconsistent with the

guest page table. gHyvi will re-construct the

shadow page table according to the previous snap-

shot to promote coherence with the guest page table

again, so that it could guarantee the hardware en-

gines use the correct translations.

(4) After the reconstruction of the shadow page table,

gHyvi sets the page table entries in the relaxed page

table shadowing back to the strict page table shad-

owing. Then, this workflow circle would be re-

peated again.

4.2 Relaxed Page Table Shadowing

From GPU’s programming model, we observe that the

guest VM’s modifications of page table entries will not

take effect until the GPU commands are submitted to

physical engine by VMM. Inspired by this, we imple-

ment a new page table shadowing mechanism for page

table called relaxed page table shadowing. This mech-

anism is applied to the guest VM’s shadow page table

when gHyvi detects that the guest VM modifies the page

table entries massively, i.e., the trap-and-emulation of the

guest page table frequently happens. In contrast to strict

page table shadowing, the relaxed page table shadowing

removes the write-protection of page tables to avoid the

cost from trapping and emulating the modifications of

page table.

For gHyvi, the relaxed page table shadowing will re-

duce the overhead of trapping and emulating due to con-

tinuous and massive modifications on the guest page ta-

ble. After the shadow page table has been switched to

the relaxed page table shadowing mechanism, modifica-

tions within the guest page table will not be updated to

shadow page table temporarily. The latency is acceptable

because of the GPU programming model in which GPU

may fetch the commands and cache the page table trans-

lations internally at the time of command submission. At

the time the commands are submitted to the physical en-

gine, the shadow page table would be consistent with

guest page table again to ensure correct translations by

reconstructing the page table.

6

USENIX Association 	 2015 USENIX Annual Technical Conference  523

4.3 Hybrid Page Table Shadowing

As we discussed before, for many workloads there are in-

frequent modifications to the guest page table, where the

strict page table shadowing mechanism fits well in this

situation. In such cases, relaxed page table shadowing is

not suitable, because reconstructing a page takes a longer

period than trapping and emulating modifications on that

page. To make gHyvi enjoy good performance for both

cases and minimize the cost of updating shadow page

table, we combine the two mechanisms into one hybrid

page table shadowing, where gHyvi’s shadow page ta-

bles adaptively switch between the strict shadowing and

the relaxed shadowing mechanisms, based on the current

workload’s access pattern.

Since infrequent page table access pattern is ubiqui-

tous, gHyvi will keep guest page table mostly working

with the strict shadowing mechanism. Once the gHyvi

detects the guest VM is frequently modifying the page

table, it will automatically switch the guest page ta-

ble into a relaxed mechanism. When the guest VM no

longer frequently modifies page table, gHyvi may switch

guest page table back to the strict shadowing mechanism.

gHyvi can also selectively apply the relaxed shadowing

mechanism to certain portions of the page table, instead

of the whole page table.

 Page Table

Strict SPT*

Guest
Host

Snap Shot

Take Snapshot

 Page Table

Relaxed SPT

Guest
Host

Compare & Reconstruct

 Page Table

Relaxed SPT

Guest
Host

Massive Update

Snap Shot

Figure 11: Page reconstruction with snapshot

4.4 Page Reconstruction

Page reconstruction is necessary when the shadow pages

are not consistent with the guest pages. There are 1024

page entries in one page, and in order to reconstruct the

shadow page, generally we need to re-write all the entries

and make sure each entry is consistent with the corre-

sponding entry of the guest page. However, when part of

a page is modified, we do not necessarily need to rewrite

all its entries when we reconstruct it, because rewriting

the unmodified part of the page is costly. Hence, we in-

troduce snapshot to accelerate the page reconstruction.

As shown in Figure 11, when a shadow page is consis-

tent with the guest page after the reconstruction or initi-

ation, we take a snapshot of the guest page and store it.

When reconstructing a page, we will compare the current

page with the snapshot and get the different entries. The

different section is the modified part of the page. Hence,

we just need to reconstruct this part to make the shadow

page consistent with the guest page table. Although the

cost of reconstructing a page is expensive, it is worth-

while compared to the efforts needed to trap and emulate

the modification multiple times.

4.5 Reconstruction Policies

We implement four reconstruction policies for gHyvi and

evaluate them to choose a final policy which delivers the

best performance. When gHyvi switches a page into

the relaxed shadowing mechanism, the write-protection

of this page is removed. Moreover, relaxed page table

shadowing is an asynchronous mechanism which allows

the shadow page table to be inconsistent when it is not

needed for delivering translations. Hence, the follow-

ing modifications on it will not be updated to the shadow

page immediately. Before the commands are submitted

to the physical engine, gHyvi will reconstruct the page’s

corresponding shadow page to ensure the correct trans-

lation. The profiling of cases with Massive Update Issue

in section 3.3 demonstrates that when the workload is ac-

cessing the page table massively, only certain pages are

being accessed repeatedly, and the majority of the guest

page table still remains untouched. Hence, it is essential

for gHyvi to switch certain pages into relaxed shadowing

mechanism and reconstruct them when necessary.

The full reconstruction policy is to switch all pages

into the relaxed shadowing mechanism, and reconstruct

them all before the commands are submitted to the physi-

cal engine. When a VM is created, it allocates 512 pages

in total, and we will remove the write-protection of all

512 pages. After that, there will no longer be any trap-

ping and emulating to update the shadow pages, and all

the shadow pages will be reconstructed to guarantee that

physical engine gets the correct translations.

The static partial reconstruction policy selects a cer-

tain amount of pages to apply with relaxed shadowing. It

reconstructs the selected pages each time to make them

consistent with their corresponding guest pages while the

unselected pages still remain in the strict shadowing. Ac-

7

524  2015 USENIX Annual Technical Conference	 USENIX Association

cording to the profiling of cases with the Massive Up-

date Issue in section 3.3, there are some pages being ac-

cessed much more frequently than other pages, which are

referred to as hot pages. These hot pages are specifi-

cally selected to utilize the relaxed shadowing mecha-

nism based on the observed access pattern.

The dynamic partial reconstruction policy is uti-

lized to apply the relaxed shadowing mechanism to pages

dynamically, based on the access pattern of workload. At

the time VM is created, all the pages are applied with

strict shadowing and gHyvi maintains a list to record

pages that are run with the relaxed shadowing. When

a page is modified for the first time, a page fault occurs.

gHyvi will add this page to the list and switch it into the

relaxed shadowing mechanism. The new pages will then

be continuously added to the list while the workload is

running. Eventually the pages in the list will cover all

the modified pages.

The dynamic segmented partial reconstruction pol-

icy is an optimization for the dynamic partial reconstruc-

tion policy. Like the dynamic partial reconstruction pol-

icy, gHyvi puts modified pages in the dirty list, and every

time when the commands submitted to the physical en-

gine, the shadow page table will be consistent with guest

page table again, by reconstruction. However, in this op-

timized policy, gHyvi will reset the dirty list, and switch

the pages in the list back to the strict shadowing mecha-

nism after the reconstruction.

Currently, gHyvi uses the dynamic segmented partial

reconstruction policy as default, according to the perfor-

mance evaluation in section 5.2.

5 Evaluation

This section presents a set of evaluations to compare

the performance of gHyvi with the original gVirt. We

run media transcoding and 2D/3D workloads in Linux,

along with 2D/3D workloads in Windows. We first com-

pare the four reconstruction policies in gHyvi, which

confirms that dynamic segmented partial reconstruction

policy is with the best performance. Then, we use

this policy to compare gHyvi with the original gVirt

as well as native performance. In summary, our re-

sults show that gHyvi achieves 85% of native perfor-

mance in most media transcoding test cases on Linux.

For Linux 3D workloads, gHyvi has no negative effect

in LightsMark, OpenArena, and UrbanTerror, respec-

tively. For Linux 2D workloads, gHyvi shows no nega-

tive effect in firefox-asteroids, firefox-scrolling, midori-

zoomed, and gnome-system-monitor, respectively. For

windows 2D/3D workloads, gHyvi has no negative ef-

fect on performance in 3Dmark06 [1], Heaven3D [3],

and PassMark2D [8] respectively.

5.1 Configuration

Our test platform deploys a 4th generation Intel Core

processor i5 4570 with 4 CPU cores (3.2Ghz), Intel

Z87 chipset, 8GB system memory and a 250GB Seagate

HDD disk. The Intel Processor Graphics integrated in the

CPU supports a 2GB global graphics memory space and

multiple 2GB local graphics memory spaces. We run 64-

bit Ubuntu 14.04 with a 3.14.1 kernel in both Dom0 and

Linux guest, and 64-bit Windows 7 in Windows guest, on

Xen 4.3. Both Linux and Windows run a native graphics

driver. Each VM is allocated with 2 vCPUs, 2GB system

memory and 672MB global graphics memory.

We evaluate the performance on native, gVirt, and

gHyvi respectively. For evaluations on Linux, our cus-

tomized media performance benchmark was used for

media performance. The Phoronix Test Suite 3D bench-

mark including LighsMark, OpenArena, UrbanTerror

are used for 3D performance. Additionally, Cario-perf-

trace 2D benchmark including firefox-asteriods (firefox-

ast), firefox-scrolling (firefox-scr), midori-zoomed (mi-

dori), and gnome-system-monitor (gnome) is used for

2D performance. For evaluations on Windows, we run

3DMark06, Heaven3D and PassMark2D workloads. All

the benchmarks are run under 1920*1080 resolution. We

will compare the performance of VM under gHyvi, gVirt,

and the native system.

5.2 Reconstruction Policy

In this section, we evaluate four reconstruction policies

designed for gHyvi, full reconstruction, static partial re-

construction with four different settings (50, 100, 200,

300), dynamic partial reconstruction, and dynamic seg-

mented reconstruction. The dynamic segmented recon-

struction achieves the best performance, up to 13x of

gVirt and 85% of native.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1, 480p

10, 480p

20, 480p

30, 480p

1, 720p

5, 720p

10, 720p

15, 720p

20, 720p

1, 1080p

4, 1080p

7, 1080p

10, 1080p

FP
S

Workloads (threads, resolution)

Native
gVirt
Full

Figure 12: gHyvi with full reconstruction policy

Figure 12 presents the performance of gHyvi with the

full reconstruction policy, and all multiple threads are

8

USENIX Association 	 2015 USENIX Annual Technical Conference  525

normalized into a single thread. Throughout all cases,

the FPS of full reconstruction policy is between 100 and

200. gHyvi shows a worse performance than gVirt in

cases without the Massive Update Issue, while achieving

a better performance when the issue occurs. As we dis-

cussed in section 4.5, all 512 pages are applied with the

relaxed mechanism, so full reconstruction brings more

overhead on reconstructing non-accessed pages, which

is the reason for cases with little page update showing

poor performance.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1, 480p

10, 480p

20, 480p

30, 480p

1, 720p

5, 720p

10, 720p

15, 720p

20, 720p

1, 1080p

4, 1080p

7, 1080p

10, 1080p

FP
S

Workloads (threads, resolution)

Native
gVirt

Static Partial 50
Static Partial 100
Static Partial 200
Static Partial 300

Figure 13: gHyvi with static reconstruction policy

We selectively switch 50, 100, 200, and 300 pages

into the relaxed mechanism to evaluate the static par-

tial reconstruction policy. As shown in Figure 13, for

cases without the issue static partial reconstruction pol-

icy achieves a worse performance than gVirt. The more

pages that are switched into the relaxed mechanism, the

worse the performance static partial reconstruction be-

comes. For pages with few page table updates, recon-

struction is meaningless. For cases with the Massive Up-

date Issue, the static partial reconstruction policy works

and achieves a superior performance than gVirt. Policy

with 200 pages setting achieves the best performance for

cases with the Massive Update Issue, because policies

with less pages cannot cover all the frequently accessed

pages, and policies with more pages include some use-

less pages.

Figure 14 confirms that the dynamic segmented partial

reconstruction achieves better performance than dynamic

partial reconstruction comprehensively. gHyvi performs

better than gVirt in issued cases, and has similar perfor-

mance in normal cases. The dynamic partial reconstruc-

tion switches the PTE pages into the relaxed mechanism

progressively. However, some pages switched into the

relaxed mechanism may never be accessed again, and

reconstructing these pages will produce extra overhead.

Dynamic segmented partial reconstruction resets the re-

laxed pages, after setting them to the guest pages. So for

each cycle, dynamic segmented policy only reconstructs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1, 480p

10, 480p

20, 480p

30, 480p

1, 720p

5, 720p

10, 720p

15, 720p

20, 720p

1, 1080p

4, 1080p

7, 1080p

10, 1080p

FP
S

Workloads (threads, resolution)

Native
gVirt

Dynamic Partial
Dynamic Segmented Partial

Figure 14: gHyvi with dynamic partial reconstruction

and dynamic segmented partial reconstruction

pages that need to be reconstructed. Overall, dynamic

segmented partial reconstruction is the most efficient pol-

icy, which is finally adopted by gHyvi.

5.3 2D and 3D performance

In this section, we evaluate the 2D and 3D performance

of gHyvi under Linux and Windows. The results show

that gHyvi has comparable performance with gVirt’s 2D

and 3D performance. Moreover, gHyvi achieves slightly

superior performance than gVirt in some cases.

 0%

20%

40%

60%

80%

100%

firefox-scrolling

firefox-asteroids

midori-zoomed

gnome-system-moitor

lightsmark

xonotic

openarena

urbanterror

warsow

%
 o

f N
at

iv
e

Pe
rfo

rm
an

ce

gVirt gHyvi

Figure 15: Performance running Linux 2D/3D work-

loads

Figure 15 demonstrates that gHyvi achieves up to

94.63% of native performance in 2D workloads and

88.81% in 3D workloads on Linux. Figure 16 demon-

strates that gHyvi achieves up to 88.81% on Windows.

With the exception of the firefox-scrolling, urbanter-

ror, warsow, SM2.0 and Pass2D, gHyvi outperforms

gVirt. However, the performance discrepancy between

gHyvi and gVirt are acceptable.

9

526  2015 USENIX Annual Technical Conference	 USENIX Association

 0%

20%

40%

60%

80%

100%

SM2.0
HDR/SM3.0

Pass2D

Heaven

%
 o

f N
at

iv
e

Pe
rfo

rm
an

ce
gVirt gHyvi

Figure 16: Performance running Windows 2D/3D work-

loads

6 Related Work

6.1 GPU Benchmarks

Since GPUs are used for acceleration of general pur-

pose computing, some benchmarks have been imple-

mented for evaluating their performance. Rodinia [12]

is a benchmark suite for heterogeneous computing. It

aids architects in the study of emerging platforms such

as GPUs. Rodinia includes applications and kernels that

target multi-core CPU and GPU platforms. And Par-

boil [27] is a set of throughput computing applications

useful for studying the performance of throughput com-

puting architecture and compilers. It collects benchmarks

from throughput computing application researchers in

many different scientific and commercial fields includ-

ing image processing, bio-molecular simulation, fluid

dynamics, and astronomy.

Unfortunately, the benchmarks above are not available

for Intel’s GPU now. Meanwhile, GPU’s media perfor-

mance has become a big concern for service providers.

However, there is no benchmark specifically for this kind

of workload. So, this paper proposes GMedia, a media

transcoding benchmark based on Intel’s MSDK.

6.2 GPU Virtualization

Though virtualization has been studied extensively in re-

cent years, GPU virtualization is still a nascent area of

research. Typically, there are four ways to use GPU in a

Virtual Machine (VM): I/O pass-through, device emula-

tion, API remoting, and mediated pass-through.

A naive way to use GPU in virtualized environment

would be to directly pass through the device to a specific

VM [20, 14]. However, the GPU resources are dedicated

and cannot be multiplexed.

Device emulation, similar to binary translation in CPU

virtualization, is impractical. GPUs, unlike CPUs, whose

specifications are not well documented, vary between

vendors [15]. Emulating GPUs from different vendors

requires vast engineering work. Notably, following up

the new GPU hardware would make it a nightmare to

maintain the codebase.

API remoting is widely used in commercial softwares

such as VMWare and VirtualBox, and has been stud-

ied throughout many years. By using API remoting,

graphic commands are forwarded from guest OS to host.

VMGL [23] and Oracle VirtualBox [7], both based on

Chromium [21], replace the standard OpenGL library in

Linux Guests with its own implementation to pass the

OpenGL commands to VMM. Nonetheless, forwarding

OpenGL commands is not considered a general solu-

tion, since Microsoft Windows mainly uses their own

DirectX API. Whether forwarding OpenGL or DirectX

commands, it would be difficult to emulate the other API.

gVirtuS [17], VGRIS [25], GViM [19], rCUDA [16] and

vCUDA [26] use the same manner to forward CUDA and

OpenCL commands, solving the problem of virtualizing

GPGPU applications.

VMware’s products consist of a virtual PCI device,

SVGA II card [15], and the corresponding driver for dif-

ferent operating systems. The emulated device acts like

a real video card which has registers, graphics memory

and a FIFO command queue. All accesses to the vir-

tual PCI device inside a VM is handled on the host side,

by a user-level process, where the actual work is per-

formed. Moreover, they have designed another graphic

API called SVGA3D. The SVGA3D protocol is simi-

lar to Direct3D and shares a common abstraction. The

purpose of SVGA3D is to eliminate the commands for a

specific GPU. Meanwhile, a GPU can also emulate the

missing features by SVGA3D protocol, which provides

a practical portability for their products.

Recently, two full GPU virtualization solutions have

been proposed, i.e., gVirt of Intel [29] and GPUvm [28],

respectively. gVirt is the first open source product level

full GPU virtualization solution in Intel platforms. gVirt

presents a vGPU instance to each VM which allows the

native graphics driver to be run in VM. The shadow

page table is updated with a coarse-grained model, which

could lead to a performance pitfall under some video

memory intensive workloads, such as media transcoding.

GPUvm presents a GPU virtualization solution on a

NVIDIA card. Both para- and full-virtualization were

implemented. However, full-virtualization exhibits a

considerable overhead for MMIO handling. The perfor-

mance of optimized para-virtualization is two to three

times slower than native. Since NVIDIA has individ-

ual graphics memory on the PCI card, while the Intel

GPU uses part of main memory as its graphics memory,

the way of handling memory virtualization is different.

GPUvm cannot handle page faults caused by NVIDIA

10

USENIX Association 	 2015 USENIX Annual Technical Conference  527

GPUs [18]. As a result, they must scan the entire page ta-

ble when translation lookaside buffer (TLB) flushes. As

gHyvi allocates graphics memory within the main mem-

ory, VMM can write-protect the page tables to track the

page table modifications. This fine-grained page table

update mechanism mitigates the overhead incurred by

the Massive Update Issue.

NVIDIA GRID [6] is a proprietary virtualization so-

lution from NVIDIA for Kepler architecture. However,

there are no technical details about their products avail-

able to the public.

6.3 Memory Virtualization

One important aspect in GPU virtualization is memory

virtualization, which has been thoroughly researched.

The software method employs a shadow page table to

reduce the overhead of translating a VM’s virtual mem-

ory address. This approach could incur severe overhead

under some circumstances. Agesen et al. [10] listed three

situations where the shadow page table cannot handle

well: the hidden page fault, address space switching,

and the tracing page table entries. They also pointed out

some optimization techniques, such as the trace mecha-

nism and eager validating. Unfortunately, it is hard to

trade off these mutually exclusive techniques. There-

fore, AMD and Intel have added the hardware support for

memory virtualization. All three overheads previously

listed before can be eliminated, but it is not the silver

bullet, a TLB miss punishment is higher in the hardware

solution. In the classical VMM implementations, VMM

employs a trace technique to prevent its shadow PTEs

from becoming inconsistent with guest PTEs, i.e. updat-

ing shadow page table strictly after the guest page table

is modified. Typically, VM trace uses write-protection

mechanism, which can be the source of overhead. This

technique is similar to the current gVirt’s strict page ta-

ble shadowing mechanism, which frequently traps and

emulates the page faults of the shadow page table, and

it causes overhead. gHyvi removes the write-protection

from shadow page table to eliminate the overhead caused

by excessive trap-and-emulation, taking advantage of the

GPU programming model [9].

7 Conclusion and Future Work

gHyvi is an optimized full GPU virtualization solution,

based on the Xen hypervisor, with the adaptive hybrid

page table shadowing scheme, which improves perfor-

mance for workloads with the Massive Update Issue

when compared to gVirt. To address this issue, this pa-

per provides a hybrid page table shadowing scheme, i.e.,

strict and relaxed page table shadowing, to provide an

optimized full GPU virtualization based on Xen hyper-

visor for Intel GPUs. gHyvi combines these two page

table shadowing mechanisms to reduce VM-exits to the

hypervisor. Further, gHyvi automatically switches page

table between them by detecting GPU’s current work-

loads, potentially showing significantly improvement to

gVirt’s performance for workloads with the Massive Up-

date Issue. In order to decide what type of the page need

to be reconstructed, four reconstruction policies are in-

troduced. By running the same testcase through the four

policies, the dynamic segmented partial reconstruction

policy performs the best.

For future work, we will adapt gHyvi to support

KVM [22] when gVirt for KVM is ready. Additionally,

gHyvi will be released in the open source community

soon. We will focus on the areas of portability, scalabil-

ity, and scheduling issues. With previous GPU command

scheduling methods, such as VGRIS and Pegasus [13],

we will investigate the low level access pattern of mas-

sive page table modification with the detailed analysis

of the performance bottleneck of high level applications.

We hope this optimized full GPU virtualization solution

gives insight into designing the support of efficient dis-

tributed systems for GPU acceleration applications.

8 Acknowledgements

We thank our shepherd Dan Tsafrir, Haibo Chen, and

the anonymous reviewers for their insightful comments.

This work was supported by National Science and Tech-

nology Major Project (No. 2013ZX03002004), National

R&D Infrastructure and Facility Development Program

(No. 2013FY111900), NRF Singapore CREATE Pro-

gram E2S2, the Shanghai Science and Technology De-

velopment Fund for High-Tech Achievement Translation

under Grant No. 14511100902, and Shanghai Key Labo-

ratory of Scalable Computing and Systems. Prof. Haib-

ing Guan is the corresponding author.

References

[1] 3dmark06. http://www.futuremark.com.

[2] Amazone high performance computing cloud using gpu.

http://aws.amazon.com/hpc/.

[3] Heaven3d. http://unigine.com/products/heaven.

[4] Intel graphics driver. http://www.x.org/wiki/

IntelGraphicsDriver/.

[5] Intel processor graphics prm. https://

01.org/linuxgraphics/documentation/

2013-intel-core-processor-family.

[6] Nvidia grid: Graphics-accelerated virtualization. http://www.

nvidia.com/object/grid-technology.html.

[7] Oracle vm virtualbox. https://www.virtualbox.org/.

[8] Passmark2d. http://www.passmark.com.

11

528  2015 USENIX Annual Technical Conference	 USENIX Association

[9] ADAMS, K., AND AGESEN, O. A comparison of software and

hardware techniques for x86 virtualization. ACM Sigplan Notices

41, 11 (2006), 2–13.

[10] AGESEN, O., GARTHWAITE, A., SHELDON, J., AND SUBRAH-

MANYAM, P. The evolution of an x86 virtual machine monitor.

ACM SIGOPS Operating Systems Review 44, 4 (2010), 3–18.

[11] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. ACM SIGOPS

Operating Systems Review 37, 5 (2003), 164–177.

[12] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER,

J. W., LEE, S.-H., AND SKADRON, K. Rodinia: A bench-

mark suite for heterogeneous computing. In Workload Charac-

terization, 2009. IISWC 2009. IEEE International Symposium on

(2009), IEEE, pp. 44–54.

[13] DEELMAN, E., SINGH, G., SU, M.-H., BLYTHE, J., GIL, Y.,

KESSELMAN, C., MEHTA, G., VAHI, K., BERRIMAN, G. B.,

GOOD, J., ET AL. Pegasus: A framework for mapping com-

plex scientific workflows onto distributed systems. Scientific Pro-

gramming 13, 3 (2005), 219–237.

[14] DONG, Y., DAI, J., HUANG, Z., GUAN, H., TIAN, K., AND

JIANG, Y. Towards high-quality i/o virtualization. In Proceed-

ings of SYSTOR 2009: The Israeli Experimental Systems Confer-

ence (2009), ACM, p. 12.

[15] DOWTY, M., AND SUGERMAN, J. Gpu virtualization on

vmware’s hosted i/o architecture. ACM SIGOPS Operating Sys-

tems Review 43, 3 (2009), 73–82.

[16] DUATO, J., PENA, A. J., SILLA, F., MAYO, R., AND

QUINTANA-ORTÍ, E. S. rcuda: Reducing the number of gpu-

based accelerators in high performance clusters. In High Perfor-

mance Computing and Simulation (HPCS), 2010 International

Conference on (2010), IEEE, pp. 224–231.

[17] GIUNTA, G., MONTELLA, R., AGRILLO, G., AND COVIELLO,

G. A gpgpu transparent virtualization component for high perfor-

mance computing clouds. In Euro-Par 2010-Parallel Processing.

Springer, 2010, pp. 379–391.

[18] GOTTSCHLAG, M., HILLENBRAND, M., KEHNE, J., STOESS,

J., AND BELLOSA, F. Logv: Low-overhead gpgpu virtualiza-

tion. In High Performance Computing and Communications &

2013 IEEE International Conference on Embedded and Ubiq-

uitous Computing (HPCC EUC), 2013 IEEE 10th International

Conference on (2013), IEEE, pp. 1721–1726.

[19] GUPTA, V., GAVRILOVSKA, A., SCHWAN, K., KHARCHE, H.,

TOLIA, N., TALWAR, V., AND RANGANATHAN, P. Gvim: Gpu-

accelerated virtual machines. In Proceedings of the 3rd ACM

Workshop on System-level Virtualization for High Performance

Computing (2009), ACM, pp. 17–24.

[20] HIREMANE, R. Intel virtualization technology for directed i/o

(intel vt-d). Technology@ Intel Magazine 4, 10 (2007).

[21] HUMPHREYS, G., HOUSTON, M., NG, R., FRANK, R., AH-

ERN, S., KIRCHNER, P. D., AND KLOSOWSKI, J. T. Chromium:

a stream-processing framework for interactive rendering on clus-

ters. In ACM Transactions on Graphics (TOG) (2002), vol. 21,

ACM, pp. 693–702.

[22] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND

LIGUORI, A. kvm: the linux virtual machine monitor. In Pro-

ceedings of the Linux Symposium (2007), vol. 1, pp. 225–230.

[23] LAGAR-CAVILLA, H. A., TOLIA, N., SATYANARAYANAN, M.,

AND DE LARA, E. Vmm-independent graphics acceleration. In

Proceedings of the 3rd international conference on Virtual exe-

cution environments (2007), ACM, pp. 33–43.

[24] LOPES, N., AND RIBEIRO, B. Gpumlib: An efficient open-

source gpu machine learning library. International Journal of

Computer Information Systems and Industrial Management Ap-

plications 3 (2011), 355–362.

[25] QI, Z., YAO, J., ZHANG, C., YU, M., YANG, Z., AND GUAN,

H. Vgris: Virtualized gpu resource isolation and scheduling in

cloud gaming. ACM Transactions on Architecture and Code Op-

timization (TACO) 11, 2 (2014), 17.

[26] SHI, L., CHEN, H., SUN, J., AND LI, K. vcuda: Gpu-

accelerated high-performance computing in virtual machines.

Computers, IEEE Transactions on 61, 6 (2012), 804–816.

[27] STRATTON, J. A., RODRIGUES, C., SUNG, I.-J., OBEID, N.,

CHANG, L.-W., ANSSARI, N., LIU, G. D., AND HWU, W.-

M. Parboil: A revised benchmark suite for scientific and com-

mercial throughput computing. Center for Reliable and High-

Performance Computing (2012).

[28] SUZUKI, Y., KATO, S., YAMADA, H., AND KONO, K. Gpuvm:

why not virtualizing gpus at the hypervisor? In Proceedings

of the 2014 USENIX conference on USENIX Annual Technical

Conference (2014), USENIX Association, pp. 109–120.

[29] TIAN, K., DONG, Y., AND COWPERTHWAITE, D. A full gpu

virtualization solution with mediated pass-through. In Proc.

USENIX ATC (2014).

[30] VECCHIOLA, C., PANDEY, S., AND BUYYA, R. High-

performance cloud computing: A view of scientific applications.

In Pervasive Systems, Algorithms, and Networks (ISPAN), 2009

10th International Symposium on (2009), IEEE, pp. 4–16.

[31] YANG, J., WANG, Y., AND CHEN, Y. Gpu accelerated molec-

ular dynamics simulation of thermal conductivities. Journal of

Computational Physics 221, 2 (2007), 799–804.

12

